Surveillance of Echinococcus multilocularis at the edge of its range is hindered by fragmented distributional patterns and low prevalence in definitive hosts. Thus, tests with adequate levels of sensitivity are especially important for discriminating between infected and non-infected areas. In this study we reassessed the prevalence of E.
View Article and Find Full Text PDFIn previous work we have documented the nuclear translocation of endothelial NOS (eNOS) and its participation in combinatorial complexes with Estrogen Receptor Beta (ERβ) and Hypoxia Inducible Factors (HIFs) that determine localized chromatin remodeling in response to estrogen (E2) and hypoxia stimuli, resulting in transcriptional regulation of genes associated with adverse prognosis in prostate cancer (PCa). To explore the role of nuclear eNOS in the acquisition of aggressive phenotype in PCa, we performed ChIP-Sequencing on chromatin-associated eNOS from cells from a primary tumor with poor outcome and from metastatic LNCaP cells. We found that: 1.
View Article and Find Full Text PDFWe recently identified in prostate tumors (PCa) a transcriptional prognostic signature comprising a significant number of genes differentially regulated in patients with worse clinical outcome. Induction of up-regulated genes was due to chromatin remodeling by a combinatorial complex between estrogen receptor (ER)-β and endothelial nitric oxide synthase (eNOS). Here we show that this complex can also repress transcription of prognostic genes that are down-regulated in PCa, such as the glutathione transferase gene GSTP1.
View Article and Find Full Text PDFThis review is based on novel observations from our laboratory on the nuclear translocation and functional role of endothelial nitric oxide synthase (eNOS) in endothelial and prostate cancer (PCa) epithelial cells. Nitric oxide (NO), the product of eNOS, is a free radical involved in the physiology and pathophysiology of living organisms and in a variety of biological processes including the maintenance of vascular homeostasis. Of relevance in this context is the role that estrogens play in the apoptotic process and the migration of endothelial cells through the regulation of target genes such as eNOS itself.
View Article and Find Full Text PDFThe identification of biomarkers that distinguish between aggressive and indolent forms of prostate cancer (PCa) is crucial for diagnosis and treatment. In this study, we used cultured cells derived from prostate tissue from patients with PCa to define a molecular mechanism underlying the most aggressive form of PCa that involves the functional activation of eNOS and HIFs in association with estrogen receptor beta (ERbeta). Cells from patients with poor prognosis exhibited a constitutively hypoxic phenotype and increased NO production.
View Article and Find Full Text PDF