Publications by authors named "V Barrere"

Objective: Peripheral nerves remain a challenging target for medical imaging, given their size, anatomical complexity, and structural heterogeneity. Quantitative ultrasound (QUS) applies a set of techniques to estimate tissue acoustic parameters independent of the imaging platform. Many useful medical and laboratory applications for QUS have been reported, but challenges remain for deployment in vivo, especially for heterogeneous tissues.

View Article and Find Full Text PDF

Objective: To detail the neurovascular crossing patterns between the leash of Henry (LoH) and the deep branch of the radial nerve (DBRN) in supination and pronation of the forearm, using imaging methods with anatomic correlation.

Materials And Methods: This cross-sectional study was performed ex vivo with HRUS and MRI with anatomic correlation on 6 samples and in vivo with HRUS with Doppler on 55 participants scanned bilaterally. The in vivo participants were enrolled over a 6-month period.

View Article and Find Full Text PDF

The clinical use of high intensity focused ultrasound (HIFU) therapy for noninvasive tissue ablation has recently gained momentum. Guidance is provided by either magnetic resonance imaging (MRI) or conventional B-mode ultrasound imaging, each with its own advantages and disadvantages. The main limitation of ultrasound imaging is its inability to provide temperature measurements over the ranges corresponding to the target temperatures during ablative thermal therapies (between 55 °C and 70 °C).

View Article and Find Full Text PDF

Objective: To compare the effectiveness of positive pressure (PP) and negative pressure (NP) for reducing gas inclusions in biological tissues in preparation for acoustic imaging.

Methods: Eighteen pieces of porcine liver in degassed saline were included in this study. For the PP group (n = 9 samples), a wristwatch waterproof tester was used to pressurize samples to 0.

View Article and Find Full Text PDF

Background: We investigated the relationship of two commonly used quantitative ultrasound (QUS) parameters, speed of sound (SoS) and attenuation coefficient (α), with water and macromolecular contents of bovine cortical bone strips as measured with ultrashort echo time (UTE) magnetic resonance imaging (MRI).

Methods: SoS and α were measured in 36 bovine cortical bone strips utilizing a single-element transducer with nominal 5 MHz center frequency based on the time of flight principles after accommodating for reflection losses. Specimens were then scanned using UTE MRI to measure total, bound, and pore water proton density (TWPD, BWPD, and PWPD) as well as macromolecular proton fraction and macromolecular transverse relaxation time (T2-MM).

View Article and Find Full Text PDF