Members of the radical S-adenosyl-L-methionine (rSAM) enzyme superfamily cleave SAM to generate the highly reactive 5'-deoxyadenosyl radical (dAdo•), where dAdo• initiates the reaction by an H-atom transfer from the substrate to form 5'-deoxyadenosine (dAdo) in nearly every member of the superfamily. However, in all rSAM enzymes, SAM also undergoes reductive cleavage to form dAdo in a reaction that is apparently uncoupled from the formation of the product. Herein, we examine the dAdo that is formed under catalytic conditions with the rSAM enzyme 7-carboxy-7-deazaguanine synthase (QueE), which catalyzes the radical-mediated transformation of 6-carboxy-5,6,7,8-tetrahydropterin (CPH) to 7-carboxy-7-deazaguanine (CDG).
View Article and Find Full Text PDFBioactive peptides generally require post-translational processing to convert them to their fully active forms. Peptidylglycine monooxygenase (PHM) is a copper-dependent enzyme that catalyzes C-alpha hydroxylation of a glycine-extended pro-peptide, a critical post-translational step in peptide amidation. A canonical mechanism based on experimental and theoretical considerations proposes that molecular oxygen reacts at the mononuclear CuM-center to form a reactive Cu(II)-superoxo intermediate capable of H-atom abstraction from the peptidyl substrate, followed by long range ET from the CuH center positioned 11 Å away across a solvent-filled cleft.
View Article and Find Full Text PDFPeptidylglycine monooxygenase is a copper-dependent enzyme that catalyzes C-alpha hydroxylation of glycine extended pro-peptides, a critical post-translational step in peptide hormone processing. The canonical mechanism posits that dioxygen binds at the mononuclear M-center to generate a Cu(II)-superoxo species capable of H atom abstraction from the peptidyl substrate, followed by long-range electron tunneling from the CuH center. Recent crystallographic and biochemical data have challenged this mechanism, suggesting instead that an "open-to-closed" transition brings the copper centers closer, allowing reactivity within a binuclear intermediate.
View Article and Find Full Text PDFRibosomally produced and post-translationally modified polypeptides (RiPPs) are a diverse group of natural products that are processed by a variety of enzymes to their biologically relevant forms. PapB is a member of the radical -adenosyl-l-methionine (rSAM) superfamily that introduces thioether cross-links between Cys and Asp residues in the PapA RiPP. We report that PapB has high tolerance for variations in the peptide substrate.
View Article and Find Full Text PDFThe evolutionarily conserved bacterial proteins MnmE and MnmG (and their homologues in Eukarya) install a 5-carboxymethylaminomethyl (cmnm) or a 5-taurinomethyl (τm) group onto wobble uridines of several tRNA species. The MnmE binds guanosine-5'-triphosphate (GTP) and methylenetetrahydrofolate (CHTHF), while MnmG binds flavin adenine dinucleotide (FAD) and a reduced nicotinamide adenine dinucleotide (NADH). Together with glycine, MnmEG catalyzes the installation of cmnm in a reaction that also requires hydrolysis of GTP.
View Article and Find Full Text PDF