Bioorg Med Chem
December 2022
Pairing glycans with tissue lectins controls multiple effector pathways in (patho)physiology. A clinically relevant example is the prodegradative activity of galectins-1 and -3 (Gal-1 and -3) in the progression of osteoarthritis (OA) via matrix metalloproteinases (MMPs), especially MMP-13. The design of heterobifunctional inhibitors that can block galectin binding and MMPs both directly and by preventing their galectin-dependent induction selectively offers a perspective to dissect the roles of lectins and proteolytic enzymes.
View Article and Find Full Text PDFThe present paper describes the functionalization of sodium hyaluronate (NaHA) with a small molecule (2-((N-(6-aminohexyl)-4-methoxyphenyl)sulfonamido)-N-hydroxyacetamide) (MMPI) having proven inhibitory activity against membrane metalloproteins involved in inflammatory processes (i.e. MMP12).
View Article and Find Full Text PDFProcalcitonin (PCT) has emerged as a promising biomarker for the rapid identification of sepsis both in human and veterinary medicine. Nevertheless, the only analytical method currently available for the detection of PCT in veterinary species, is represented by immunoassays, useful only for research purposes. In this work, we report the development of two biosensors which utilize molecularly imprinted polymers (MIPs) for the detection of canine and equine PCT.
View Article and Find Full Text PDFThe work reports an innovative bioassay for the detection of gonadorelin in urine, a gonadotropin-releasing hormone agonist widely used in fertility medicine and to treat hormonal dysfunctions. Gonadorelin is also a synthetic hormone listed by the World Anti-Doping Agency (WADA) and of interest in anti-doping controls. The main novelty relies on the development of a biocompatible, stable, and low-cost biomimetic receptor alternative to classic antibodies.
View Article and Find Full Text PDFThe continuous research for alternatives to antibody-based detection drove, in the last decades, the development of numerous strategies. Molecularly imprinted polymers (MIPs) emerged thanks to the low-cost and long-term stability features, where the choice of natural functional monomer(s) represents the key step for efficient imprinting of biomolecules. The chemical structure of dopamine (DA), one of the most used natural functional monomers, provided the inspiration for this work.
View Article and Find Full Text PDF