Osteoarthritis Cartilage
July 2020
Objective: Osteoarthritis (OA) is a progressive degenerative disease of the articular cartilage caused by an unbalanced activity of proteases, cytokines and other secreted proteins. Since heparan sulfate (HS) determines the activity of many extracellular factors, we investigated its role in OA progression.
Methods: To analyze the role of the HS level, OA was induced by anterior cruciate ligament transection (ACLT) in transgenic mice carrying a loss-of-function allele of Ext1 in clones of chondrocytes (Col2-rtTA-Cre;Ext1).
Heparan sulfate (HS) regulates the activity of many signaling molecules critical for the development of endochondral bones. Even so, mice with a genetically altered HS metabolism display a relatively mild skeletal phenotype compared to the defects observed in other tissues and organs pointing to a reduced HS dependency of growth-factor signaling in chondrocytes. To understand this difference, we have investigated the glycosaminoglycan (GAG) composition in two mouse lines that produce either reduced levels of HS (Ext1 mice) or HS lacking 2-O-sulfation (Hs2st1 mice).
View Article and Find Full Text PDF• Massive LA thrombus is rare in the absence of anticoagulation and mitral stenosis. • Direct-acting oral anticoagulants are widely used in nonvalvular AF. • Inadequate dosing of direct-acting anticoagulants may be difficult to recognize.
View Article and Find Full Text PDFOne of the key regulators of endochondral ossification is Indian hedgehog (Ihh), which acts as a long-range morphogen in the developing skeletal elements. Previous studies have shown that the distribution and signaling activity of Ihh is regulated by the concentration of the extracellular glycosaminoglycan heparan sulfate (HS). An essential step during biosynthesis of HS is the epimerization of D-glucuronic to L-iduronic acid by the enzyme glucuronyl C5-epimerase (Hsepi or Glce).
View Article and Find Full Text PDFMorphogens exert their effects over long distances, typically by spreading from cell to cell to activate signal transduction in surrounding tissues in concentration-dependent manner. One example of a morphogen is the signaling molecule Hedgehog (Hh), which controls growth and patterning during development and has also been implicated in the progression of numerous cancers. To this end, accessory mechanisms that release, transport, and receive Hhs are required to elicit temporally and spatially specific responses in cells and tissues.
View Article and Find Full Text PDF