Aim: To evaluate the efficacy and safety of the advanced technique for positioning the endocardial electrodes of a cardiac contractility modulation (CCM) device.
Materials And Methods: The CCM system was implanted in 100 patients, of which 60 CCM electrodes were positioned in the most optimal zones of myocardial perfusion, in particular, in the zone of the minor focal-scar/fibrotic lesion (the Summed Rest Score of 0 to 1-2, the intensity of the radiopharmaceutical at least 30%), and in 40 patients according to the standard procedure. Before the implantation of the CCM system, 60 patients underwent tomography (S-SPECT) of the myocardium with Tc-methoxy-isobutyl-isonitrile at rest to determine the most optimal electrode positioning zones and 100 patients underwent transthoracic echocardiography at baseline and after 12 months to assess the effectiveness of surgical treatment.
Type 2 diabetes mellitus (T2DM) is accompanied by halogenative stress resulting from the excessive activation of neutrophils and neutrophilic myeloperoxidase (MPO) generating highly reactive hypochlorous acid (HOCl). HOCl in blood plasma modifies serum albumin (Cl-HSA). We studied the formation of neutrophil extracellular traps (NETs) in the whole blood and by isolated neutrophils under the action of Cl-HSA.
View Article and Find Full Text PDFBiochemistry (Mosc)
January 2024
The review is devoted to the mechanisms of free radical lipid peroxidation (LPO) initiated by reactive halogen species (RHS) produced in mammals, including humans, by heme peroxidase enzymes, primarily myeloperoxidase (MPO). It has been shown that RHS can participate in LPO both in the initiation and branching steps of the LPO chain reactions. The initiation step of RHS-induced LPO mainly involves formation of free radicals in the reactions of RHS with nitrite and/or with amino groups of phosphatidylethanolamine or Lys.
View Article and Find Full Text PDFNETosis, i.e., the formation of neutrophil extracellular traps (NET), and neutrophil autophagy are important elements in the pathogenesis and the development of complications of type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDFThe utility of positron emission tomography in cardiology currently goes beyond the ischemic heart disease and covers an increasingly wider range of non-coronary pathology, which requires timely expert diagnostics, including chronic heart disease of any etiology, valvular and electrophysiology disorders, cardiooncology. Authors emphasize the importance of the development of positron emission tomography technologies in the Russian Federation. This includes the development and implementation of new radiopharmaceuticals for the diagnosis of pathological processes of the cardiovascular system, systemic and local inflammation, including atherosclerosis, impaired perfusion and myocardial metabolism, and also for solving specific diagnostic tasks in comorbid pathology.
View Article and Find Full Text PDF