Publications by authors named "V B Masyakin"

Background: Genetic factors may influence an individual's sensitivity to ionising radiation and therefore modify his/her risk of developing papillary thyroid carcinoma (PTC). Previously, we reported that common single nucleotide polymorphisms (SNPs) within the DNA damage recognition gene ATM contribute to PTC risk in Belarusian children exposed to fallout from the Chernobyl power plant accident. Here we explored in the same population the contribution of a panel of DNA repair-related SNPs in genes acting downstream of ATM.

View Article and Find Full Text PDF

A dramatic increase in the incidence of papillary thyroid carcinoma (PTC) after childhood exposure to ionizing radiation from the Chernobyl nuclear accident has been described as the largest number of tumors of one type due to one cause that have ever occurred. inter-individual variations in response to radiation have been documented and the role of genetics in sporadic PTC is well established, suggesting that genetic factors may also affect the risk of radiation-related PTC. To investigate how environmental and host factors interplay to modify PTC risk, we genotyped 83 cases and 324 matched controls sampled from children living in the area contaminated by fallout from the Chernobyl power plant accident for 19 polymorphisms previously associated with PTC, thyroid biology or radiation-induced second primary tumors.

View Article and Find Full Text PDF

Background: Previous studies showed an increased risk of thyroid cancer among children and adolescents exposed to radioactive iodines released after the Chornobyl (Chernobyl) accident, but the effects of screening, iodine deficiency, age at exposure and other factors on the dose-response are poorly understood.

Methods: We screened 11 970 individuals in Belarus aged 18 years or younger at the time of the accident who had estimated (131)I thyroid doses based on individual thyroid activity measurements and dosimetric data from questionnaires. The excess odds ratio per gray (EOR/Gy) was modelled using linear and linear-exponential functions.

View Article and Find Full Text PDF

Background: After the Chernobyl nuclear power plant accident in April 1986, a large increase in the incidence of childhood thyroid cancer was reported in contaminated areas. Most of the radiation exposure to the thyroid was from iodine isotopes, especially 131I. We carried out a population-based case-control study of thyroid cancer in Belarus and the Russian Federation to evaluate the risk of thyroid cancer after exposure to radioactive iodine in childhood and to investigate environmental and host factors that may modify this risk.

View Article and Find Full Text PDF

We collected bricks from buildings in the heavily contaminated evacuated area of Belarus in a 30-km zone around the Chernobyl nuclear power station and the Gomel-Bryansk area of 150-250 km from Chernobyl and estimated the cumulative radiation dose caused by the reactor accident by measuring the thermoluminescence (TL) of the bricks. The annual dose at each location was measured using glass dosimeters and thermoluminescence dosimeters (TLD). The dose rate was measured using an energy-compensated NaI scintillation survey meter.

View Article and Find Full Text PDF