Luminal breast tumors with little or no estrogen receptor α expression confer poor prognosis. Using the Met1 murine model of luminal breast cancer, we characterized the IGF1-dependency of diet-induced obesity (DIO) and calorie restriction (CR) effects on tumor growth, growth factor signaling, epithelial-to-mesenchymal transition (EMT), and chemokine expression. Liver-specific IGF1-deficient (LID) and littermate control (LC) mice were administered control, DIO, or 30% CR diets for 3 months before orthotopic injection of Met1 cells.
View Article and Find Full Text PDFObjective: Breast cancer is the second leading cause of cancer death among American women. Risk factors for breast cancer include obesity, alcohol consumption, and estrogen therapy. In the present studies, we determine the simultaneous effects of these three risk factors on wingless int (Wnt)-1 mammary tumor growth.
View Article and Find Full Text PDFPurpose: Obesity increases the risk of diabetes. The dysregulation of estrogen metabolism has been associated with the susceptibility to obesity and diabetes. Here, we explore the role estrogen plays in sex differences in obesity and glucose metabolism, specifically adipocyte biology.
View Article and Find Full Text PDFBackground: Alcohol consumption is an established risk factor for breast cancer. Yet, the mechanism by which alcohol affects breast cancer development remains unresolved. The transition from the premenopausal to the postmenopausal phase is associated with a drastic reduction in systemic estrogen levels.
View Article and Find Full Text PDFThe risk of developing breast cancer and fatty liver is increased by alcohol consumption. The objective of the present study was to determine if obesity and exogenous estrogen supplementation alter the effects of alcohol on mammary tumorigenesis and fatty liver. Ovariectomized female mice were (1) fed diets to induce overweight and obese phenotypes, (2) provided water or 20% alcohol, (3) implanted with placebo, low- or high-dose estrogen pellets and (4) injected with Met-1 mouse mammary cancer cells.
View Article and Find Full Text PDF