A novel platform for the skeletal editing of single C-C bonds via a single-carbon insertion has been developed using diazirines. This strategy involves the photogeneration of arylchlorocarbenes as carbynoid species that undergo site-selective carbene insertion into tertiary C-H bonds and a subsequent Wagner-Meerwein rearrangement promoted by a silver salt. Our skeletal editing strategy based on a formal selective carbyne C-C bond insertion has been demonstrated in six core-to-core conversions, including linear and cyclic benzylic substrates, alkanes and late-stage functionalizations.
View Article and Find Full Text PDFThe occlusion bodies of Autographa californica multiple nucleopolyhedrovirus are proteinaceous formations with significant biotechnological potential owing to their capacity to integrate foreign proteins through fusion with polyhedrin, their primary component. However, the strategy for successful heterologous protein inclusion still requires further refinement. In this study, we conducted a comparative assessment of various conditions to achieve the embedding of recombinant proteins within polyhedra.
View Article and Find Full Text PDFBaculoviruses have shown great potential as gene delivery vectors in mammals, although their effectiveness in transferring genes varies across different cell lines. A widely employed strategy to improve transduction efficiency is the pseudotyping of viral vectors. In this study, we aimed to develop a stable Sf9 insect cell line that inducibly expresses the G-protein of the vesicular stomatitis virus to pseudotype budded baculoviruses.
View Article and Find Full Text PDF