Publications by authors named "V Aksenova"

Article Synopsis
  • Influenza A viruses contain eight genomic RNAs that are transcribed in the host cell nucleus, with two undergoing alternative splicing to produce M1 and M2 mRNAs.
  • The NS1-BP protein helps facilitate the splicing of M1 to M2 mRNA by competing with the viral NS1 protein, which normally inhibits mRNA export.
  • The research suggests a mechanism where spliced M mRNAs are exported from the nucleus despite NS1's inhibitory effects, crucial for the production of viral proteins needed for replication and virus release.
View Article and Find Full Text PDF

Identity-specific interphase chromosome conformation must be re-established each time a cell divides. To understand how interphase folding is inherited, we developed an experimental approach that physically segregates mediators of G1 folding that are intrinsic to mitotic chromosomes from cytoplasmic factors. Proteins essential for nuclear transport, RanGAP1 and Nup93, were degraded in pro-metaphase arrested DLD-1 cells to prevent the establishment of nucleo-cytoplasmic transport during mitotic exit and isolate the decondensing mitotic chromatin of G1 daughter cells from the cytoplasm.

View Article and Find Full Text PDF

We analyze the impact of temperature on the diffusion coefficient of an inertial Brownian particle moving in a symmetric periodic potential and driven by a symmetric time-periodic force. Recent studies have revealed the low-friction regime in which the diffusion coefficient shows giant damped quasiperiodic oscillations as a function of the amplitude of the time-periodic force [I. G.

View Article and Find Full Text PDF

Nuclear export of influenza A virus (IAV) mRNAs occurs through the nuclear pore complex (NPC). Using the Auxin-Induced Degron (AID) system to rapidly degrade proteins, we show that among the nucleoporins localized at the nucleoplasmic side of the NPC, TPR is the key nucleoporin required for nuclear export of influenza virus mRNAs. TPR recruits the TRanscription and EXport complex (TREX)-2 to the NPC for exporting a subset of cellular mRNAs.

View Article and Find Full Text PDF

Introduction: The tuberculin skin test has significant limitations for use in individuals vaccinated with BCG. The presence in the genome of of the RDI region, which is absent in the genome of Mycobacterium bovis BCG and most non-tuberculous mycobacteria, made it possible to develop new skin tests, which include a skin test with a recombinant tuberculosis allergen [RTA (Diaskintest®, JSC Generium, Russia)]. Diaskintest has shown high diagnostic performance in clinical trials and in conditions of high prevalence of tuberculosis infection.

View Article and Find Full Text PDF