Liposome-supported peritoneal dialysis (LSPD) with transmembrane pH-gradient liposomes was previously shown to enhance ammonia removal in cirrhotic rats and holds promise for the treatment of hyperammonemic crises-associated disorders. The main objective of this work was to conduct the preclinical evaluation of LSPD in terms of pharmacokinetics, ammonia uptake, and toxicology to seek regulatory approval for a first-in-human study. The formulation containing citric acid-loaded liposomes was administered intraperitoneally at two different doses once daily for ten days to healthy minipigs.
View Article and Find Full Text PDFAsymmetric flow field-flow fractionation (AF4) coupled with UV-Vis spectroscopy, multi-angle light scattering (MALS) and refractive index (RI) detection has been applied for the characterization of MIL-100(Fe) nanoMOFs (metal-organic frameworks) loaded with nucleoside reverse transcriptase inhibitor (NRTI) drugs for the first time. Empty nanoMOFs and nanoMOFs loaded with azidothymidine derivatives with three different degrees of phosphorylation were examined: azidothymidine (AZT, native drug), azidothymidine monophosphate (AZT-MP), and azidothymidine triphosphate (AZT-TP). The particle size distribution and the stability of the nanoparticles when interacting with drugs have been determined in a time frame of 24 h.
View Article and Find Full Text PDFPeritoneal dialysis (PD) performed with transmembrane pH-gradient liposomes was reported to efficiently remove ammonia from the body, representing a promising alternative to current standard-of-care for patients with severe hepatic encephalopathy. In this study, we further characterized the properties of liposome-supported peritoneal dialysis (LSPD) by 1) assessing its in-use stability in the presence of ascitic fluids from liver-disease patients; 2) investigating its interactions with drugs that are commonly administered to acute-on-chronic liver failure patients; and 3) analyzing the in vivo extraction profile of LSPD. We found that LSPD fluid maintained its in vitro ammonia uptake capability when combined with ascitic fluids.
View Article and Find Full Text PDFThe efficacy of the routinely used anti-HIV (Human Immunodeficiency Virus) therapy based on nucleoside reverse transcriptase inhibitors (NRTIs) is limited by the poor cellular uptake of the active triphosphorylated metabolites and the low efficiency of intracellular phosphorylation of their prodrugs. Nanoparticles of iron(iii) polycarboxylate Metal-Organic Frameworks (nanoMOFs) are promising drug nanocarriers. In this study, two active triphosphorylated NRTIs, azidothymidine triphosphate (AZT-Tp) and lamivudine triphosphate (3TC-Tp), were successfully co-encapsulated into the biocompatible mesoporous iron(iii) trimesate MIL-100(Fe) nanoMOF in order to improve anti-HIV therapies.
View Article and Find Full Text PDFPositively charged cyclodextrins (PCCDs) are molecular carriers of particular interest for their ability to readily enter into cancer cells. Of main interest, guanidino- and aminoalkyl- PCCDs can be conveniently synthesized and form stable and strong inclusion complexes with various active molecules bearing phosphate groups. We have addressed here the challenge to deliver into cancer cells phosphorylated gemcitabine drugs well known for their instability and inability to permeate cell membranes.
View Article and Find Full Text PDF