Background: Oesophageal adenocarcinoma (OAC) is a highly heterogeneous cancer with poor survival. Standard curative treatment is chemotherapy with or without radiotherapy followed by oesophagectomy. Genomic heterogeneity is a feature of OAC and has been linked to treatment resistance.
View Article and Find Full Text PDFGermline-derived epitopes shape tumor development through immunoediting.
View Article and Find Full Text PDFA plateau in treatment effect can be seen for the current 'one-size-fits-all' approach to oesophageal adenocarcinoma (OAC) management using neoadjuvant chemoradiotherapy (nCRT) or chemotherapy (nCT). In OAC, the tumour microenvironment (TME) is largely immunosuppressed, however a subgroup of patients with an immune-inflamed TME exist and show improved outcomes. We aimed to understand the overall immune-based mechanisms underlying treatment responses and patient outcomes in OAC, and in relation to neoadjuvant therapy modality.
View Article and Find Full Text PDFCells within the tumour microenvironment (TME) can impact tumour development and influence treatment response. Computational approaches have been developed to deconvolve the TME from bulk RNA-seq. Using scRNA-seq profiling from breast tumours we simulate thousands of bulk mixtures, representing tumour purities and cell lineages, to compare the performance of nine TME deconvolution methods (BayesPrism, Scaden, CIBERSORTx, MuSiC, DWLS, hspe, CPM, Bisque, and EPIC).
View Article and Find Full Text PDF