Publications by authors named "V A Yurkiv"

In this study, a combination of ab initio modeling and experimental analysis is presented to investigate and elucidate the electronic conductivity of films composed of conducting polymer blend PEDOT:PSS-PEO. Detailed density functional theory (DFT) calculations, aligned with experimental data, aided at profound understanding of the chemical composition, band structure, and the mechanical behavior of these composite materials. Systematic evaluation across diverse ratios of PEDOT, PSS, and PEO revealed a pronounced transformation in electronic properties.

View Article and Find Full Text PDF

Multi-principal element nanoparticles are an emerging class of materials with potential applications in medicine and biology. However, it is not known how such nanoparticles interact with bacteria at nanoscale. In the present work, we evaluated the interaction of multi-principal elemental alloy (FeNiCu) nanoparticles with () bacteria using the graphene liquid cell (GLC) scanning transmission electron microscopy (STEM) approach.

View Article and Find Full Text PDF

Rapidly growing flexible and wearable electronics highly demand the development of flexible energy storage devices. Yet, these devices are susceptible to extreme, repeated mechanical deformations under working circumstances. Herein, the design and fabrication of a smart, flexible Li-ion battery with shape memory function, which has the ability to restore its shape against severe mechanical deformations, bending, twisting, rolling or elongation, is reported.

View Article and Find Full Text PDF

Hybrid nanocrystals combining different properties together are important multifunctional materials that underpin further development in catalysis, energy storage, et al., and they are often constructed using heterogeneous seeded growth. Their spatial configuration (shape, composition, and dimension) is primarily determined by the heterogeneous deposition process which depends on the lattice mismatch between deposited material and seed.

View Article and Find Full Text PDF

The creeping-flow theory describing evolution and steady-state shape of two-dimensional ionic-conductor drops under the action of surface tension and the subcritical (in terms of the electric Bond number) electric field imposed in the substrate plane is developed. On the other hand, the experimental data are acquired for drops impacted or softly deposited on dielectric surfaces of different wettability and subjected to an in-plane subcritical electric field. Even though the experimental situation involves viscous friction of drops with the substrates and wettability-driven motion of the contact line, the comparison to the theory reveals that it can accurately describe the steady-state drop shape on a non-wettable substrate.

View Article and Find Full Text PDF