Object: Lower-field MR is reemerging as a viable, potentially cost-effective alternative to high-field MR, thanks to advances in hardware, sequence design, and reconstruction over the past decades. Evaluation of lower field strengths, however, is limited by the availability of lower-field systems on the market and their considerable procurement costs. In this work, we demonstrate a low-cost, temporary alternative to purchasing a dedicated lower-field MR system.
View Article and Find Full Text PDFPurpose: To propose respiratory motion-informed locally low-rank reconstruction (MI-LLR) for robust free-breathing single-bolus quantitative 3D myocardial perfusion CMR imaging. Simulation and in-vivo results are compared to locally low-rank (LLR) and compressed sensing reconstructions (CS) for reference.
Methods: Data were acquired using a 3D Cartesian pseudo-spiral in-out k-t undersampling scheme (R = 10) and reconstructed using MI-LLR, which encompasses two stages.
Aims: Myocardial involvement is common in patients with systemic sclerosis (SSc) and causes myocardial fibrosis and subtle ventricular dysfunction. However, the temporal onset of myocardial involvement during the progression of the disease and its prognostic value are yet unknown. We used cardiovascular magnetic resonance (CMR) to investigate subclinical functional impairment and diffuse myocardial fibrosis in patients with very early diagnosis of SSc (VEDOSS) and established SSc and examined whether this was associated with mortality.
View Article and Find Full Text PDFCardiac diffusion tensor imaging (cDTI) provides invaluable information about the state of myocardial microstructure. For further clinical dissemination, free-breathing acquisitions are desired, which however require image registration prior to tensor estimation. Due to the varying contrast and the intrinsically low signal-to-noise ratio (SNR), registration is very challenging and thus can introduce additional errors in the tensor estimation.
View Article and Find Full Text PDFPurpose: Due to its safe, low-cost, portable, and real-time nature, ultrasound is a prominent imaging method in computer-assisted interventions. However, typical B-mode ultrasound images have limited contrast and tissue differentiation capability for several clinical applications.
Methods: Recent introduction of imaging speed-of-sound (SoS) in soft tissues using conventional ultrasound systems and transducers has great potential in clinical translation providing additional imaging contrast, e.