Context: Pathogenic variants in the TBCE gene, encoding tubulin-specific chaperone E crucial for tubulin folding, are linked to three severe neurodevelopmental disorders: Hypoparathyroidism-retardation-dysmorphism (HRD) syndrome, Kenny-Caffey syndrome type 1, and progressive encephalopathy with amyotrophy and optic atrophy.
Objective: We identified patients with a novel, milder TBCE-associated phenotype and aimed to characterize it at the clinical and molecular levels.
Materials And Methods: We conducted splicing analysis using deep NGS sequencing of RT-PCR products and detected TBCE through Western blotting.
Background: The gene encodes ATP-dependent RNA helicase SUPV3L1, which is a part of the mitochondrial degradosome complex or SUV3. SUPV3L1 unwinds secondary structures of mitochondrial RNA (mtRNA) and facilitates the degradation of mtRNA molecules. A nonsense homozygous variant in the gene was recently associated with mitochondrial disease.
View Article and Find Full Text PDFHuman-induced airway basal cells (hiBCs) derived from human-induced pluripotent stem cells (hiPSCs) offer a promising cell model for studying lung diseases, regenerative medicine, and developing new gene therapy methods. We analyzed existing differentiation protocols and proposed our own protocol for obtaining hiBCs, which involves step-by-step differentiation of hiPSCs into definitive endoderm, anterior foregut endoderm, NKX2.1+ lung progenitors, and cultivation on basal cell medium with subsequent cell sorting using the surface marker CD271 (NGFR).
View Article and Find Full Text PDFSkin fibroblasts obtained from a 5-year-old girl with genetically proven (two heterozygous mutations in ARSB gene) and clinically manifested mucopolysaccharidosis type VI were successfully transformed into induced pluripotent stem cells by using Sendai virus-based reprogramming vectors including the four Yamanaka factors namely SOX2, OCT3/4, KLF4, and c-MYC. These iPSCs expressed pluripotency markers, had a normal karyotype and the potential to differentiate into three germ layers in spontaneous differentiation assay. The line may be used for cell differentiation and pharmacological investigations, and also may provide a model for development of a personalized treatment including drug screening and genome editing.
View Article and Find Full Text PDF