Publications by authors named "V A Sautenkov"

In this Letter we discuss our approach that makes possible creation of the steady-state ultracold plasma having various densities and temperatures by means of continuous two-step optical excitation of calcium atoms in the magneto-optical trap. A strongly coupled ultracold plasma can be used as an excellent test platform for studying many-body interactions associated with various plasma phenomena. The parameters of the plasma are studied using laser-induced fluorescence of calcium ions.

View Article and Find Full Text PDF

We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O(2), followed by two-photon excitation of atomic oxygen. We have analyzed the temporal shapes of the emitted pulses and have observed very short duration intensity spikes as well as a large Rabi frequency that corresponds to the emitted field.

View Article and Find Full Text PDF

We demonstrate that collective atomic interferences can be investigated by measuring the superfluorescence (SF) time delay. A pair of broadband (≈20  nm), ultrashort (≈80  fs), collinear pulses with a variable delay coherently excites rubidium (Rb) atoms. The generated superfluorescent pulses at 420 nm on the cascade transition are recorded by a picosecond streak camera.

View Article and Find Full Text PDF

We present an experimental and theoretical study of the carrier-envelope phase effects on population transfer between two bound atomic states interacting with intense ultrashort pulses. Radio frequency pulses are used to transfer population among the ground state hyperfine levels in rubidium atoms. These pulses are only a few cycles in duration and have Rabi frequencies of the order of the carrier frequency.

View Article and Find Full Text PDF

Recent advances in coherent Raman spectroscopy hold exciting promise for many potential applications. For example, a technique, mitigating the nonresonant four-wave-mixing noise while maximizing the Raman-resonant signal, has been developed and applied to the problem of real-time detection of bacterial endospores. After a brief review of the technique essentials, we show how extensions of our earlier experimental work [Pestov D, et al.

View Article and Find Full Text PDF