Background: Phenotyping inflammation in ST-elevation myocardial infarction (STEMI) is a challenge for modern cardiology. NLRP3 inflammasome is a proven predictor of adverse outcomes in cardiovascular disease, but its specificity in stratifying inflammatory activity in patients with myocardial infarction (MI) has not been demonstrated. The aim of this paper is to describe the levels of NLRP3 protein and IL-1β concentrations and their changes in dynamics and associations with clinical, laboratory and instrumental characteristics of patients with STEMI.
View Article and Find Full Text PDFThe in-hospital mortality rate in acute myocardial infarction (AMI) remains high despite the undoubted achievements in treatment of this disease achieved in the last 40 years. The dangerous complications of AMI remain cardiac microvascular injury (CMI) and intramyocardial hemorrhage (IMH). IMH is a widespread pathology that occurs in 42 - 57% of patients with ST-segment elevation myocardial infarction and percutaneous coronary intervention.
View Article and Find Full Text PDFNuclear imaging modalities can detect somatostatin receptor type 2 (SSTR2) in vivo as a potential marker of local post-MI inflammation. SSTR2+ macrophages are thought to be the main substrate for SSTR-targeted radioimaging. However, the distribution of SSTR2+ cells in the MI patients' myocardium is unknown.
View Article and Find Full Text PDFCardiogenic shock (CS) is one of the most serious complications of myocardial infarction (MI) with a high mortality rate. The timely and effective prevention and early suppression of this adverse event may influence the prognosis and outcome in patients with MI complicated by CS (MI CS). Despite the use of existing pharmaco-invasive options for maintaining an optimal pumping function of the heart in patients with MI CS, its mortality remains high, prompting the search for new approaches to pathogenetic therapy.
View Article and Find Full Text PDFConventional X-ray therapy (XRT) is commonly applied to suppress cancerous tumors; however, it often inflicts collateral damage to nearby healthy tissue. In order to provide a better conformity of the dose distribution in the irradiated tumor, proton therapy (PT) is increasingly being used to treat solid tumors. Furthermore, radiosensitization with gold nanoparticles (GNPs) has been extensively studied to increase the therapeutic ratio.
View Article and Find Full Text PDF