The emission centers and excited state characteristics of silica glasses implanted with Gd ions were studied by time-resolved pulsed cathodoluminescence. It was found that in the process of ion implantation, two types of new emission centers associated with Gd ions as well as Si quantum dots are formed in glassy silica. The distributions of excited states over the lifetime were found for both new centers and Si quantum dots.
View Article and Find Full Text PDFX-ray and optical spectroscopies were applied in order to study the band structure and electronic excitations of the SiO /R O (R = Si, Al, Zr) suboxide superlattices. The complementary x-ray emission and absorption measurements allow for the band gap values for the SiO layers to be established, which are found to have almost no dependency on the cation type R. It is determined that, after annealing, the stoichiometric factor x remains near 1.
View Article and Find Full Text PDFOptical and transport properties of nonstoichiometric tantalum oxide thin films grown by ion beam deposition were investigated in order to understand the dominant charge transport mechanisms and reveal the nature of traps. The TaO films composition was analyzed by X-ray photoelectron spectroscopy and by quantum-chemistry simulation. From the optical absorption and photoluminescence measurements and density functional theory simulations, it was concluded that the 2.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2012
The anomalous (τ < 10 ns) luminescence of wide bandgap crystals of lithium-gadolinium orthoborate Li(6)GdB(3)O(9) doped with trivalent cerium ions, has been revealed for the first time and investigated through the low-temperature time-resolved vacuum ultraviolet synchrotron spectroscopy. It was shown that the optical transitions at 6.2 eV are due to electron transfer from the ground 4f(1) states of Ce(3+) ion onto the autoionized states near the conduction band bottom of a crystal.
View Article and Find Full Text PDF