Modern poultry production is faced with the challenge of properly managing its associated wastes, in particular chicken manure (CM). There is a need to improve the management of CM through conversion processes that allow the production of value-added products, particularly for energy purposes, such as hydrothermal carbonization (HTC) and anaerobic digestion (AD). The objectives of this study were: i) to optimize the CM-HTC, using response surface methodology with simultaneous optimization of mass yield and higher heating value (HHV), and ii) to evaluate the biomethane potential of the process water generated from hydrochar production under the optimized condition.
View Article and Find Full Text PDFIn traditional neural network designs, a multilayer perceptron (MLP) is typically employed as a classification block following the feature extraction stage. However, the Kolmogorov-Arnold Network (KAN) presents a promising alternative to MLP, offering the potential to enhance prediction accuracy. In this paper, we studied KAN-based networks for pixel-wise classification of hyperspectral images.
View Article and Find Full Text PDFHigh-quality-factor optical microresonators have become an appealing object for numerous applications. However, the mid-infrared band experiences a lack of applicable materials for nonlinear photonics. Crystalline germanium demonstrates attractive material properties such as high nonlinear refractive index, large transparency window including the mid-IR band, particularly long wave multiphonon absorption limit.
View Article and Find Full Text PDFBackground: Amplicon-based next-generation sequencing (NGS) has rapidly gained popularity as a powerful method for delineating taxa in complex communities, including helminths. Here, we applied this approach to identify species and genotypes of zoonotic nematodes of the Trichinella genus. A known limitation of the current multiplex PCR (mPCR) assay recommended by the International Commission on Trichinellosis is that it does not differentiate Trichinella nativa from T.
View Article and Find Full Text PDFThis study presents the controllable multi-frequency self-injection locking regimes realization with an original experimental setup composed of a reflective semiconductor optical amplifier, an external feedback mirror, and a high-Q chip-scale SiN ring microresonator. Our findings demonstrate the conditions of multiple modes' simultaneous locking being analogous to Vernier effect. We varied the free spectral range of the external-cavity laser by its length tuning, enabling the robust generations from 1 to 4 self-injection locked narrow lines on demand, that is important for optical telecommunications, and photonic-based microwave and THz sources.
View Article and Find Full Text PDF