Publications by authors named "V A Lisinetskii"

We introduce fluorescence-detected pump-probe microscopy by combining a wavelength-tunable ultrafast laser with a confocal scanning fluorescence microscope, enabling access to the femtosecond time scale on the micrometer spatial scale. In addition, we obtain spectral information from Fourier transformation over excitation pulse-pair time delays. We demonstrate this new approach on a model system of a terrylene bisimide (TBI) dye embedded in a PMMA matrix and acquire the linear excitation spectrum as well as time-dependent pump-probe spectra simultaneously.

View Article and Find Full Text PDF

We describe a setup for time-resolved photoemission electron microscopy with aberration correction enabling 3 nm spatial resolution and sub-20 fs temporal resolution. The latter is realized by our development of a widely tunable (215-970 nm) noncollinear optical parametric amplifier (NOPA) at 1 MHz repetition rate. We discuss several exemplary applications.

View Article and Find Full Text PDF

Plasmonic resonators can be designed to support spectrally well-separated discrete modes. The associated characteristic spatial patterns of intense electromagnetic hot-spots can be exploited to enhance light-matter interaction. Here, we study the local field dynamics of individual hot-spots within a nanoslit resonator by detecting characteristic changes of the photoelectron emission signal on a scale of ∼12 nm using time-resolved photoemission electron microscopy (TR-PEEM) and by excitation with the output from a 20 fs, 1 MHz noncollinear optical parametric amplifier (NOPA).

View Article and Find Full Text PDF

We report on a new low-cost and easily fabricated type of liquid crystalline polymer composites demonstrating low threshold random lasing, which can be used as a cheap and simple mirror-less laser source. The composite is based on mass-producible commercially available porous polypropylene (Celgard 2500) infiltrated with low-molar-mass liquid crystal material doped with Rhodamine 800 laser dye. Excitation with red nanosecond laser (630 nm) induces random lasing with the emission peak in NIR spectral range (804 nm) with noticeable degree of linear polarization.

View Article and Find Full Text PDF

Distributed feedback (DFB) lasers are produced directly in fluorescent azobenzene-containing materials using a single holographic optical step. Surface relief grating capable of producing images in fluorescence microscopy can be holographically formed in a number of materials.

View Article and Find Full Text PDF