Earlier studies aimed at investigating the metabolism of endogenous nucleoside triphosphates in synchronous cultures of cells revealed an auto-oscillatory mode of functioning of the pyrimidine and purine nucleotide biosynthesis system, which the authors associated with the dynamics of cell division. Theoretically, this system has an intrinsic oscillatory potential, since the dynamics of its functioning are controlled through feedback mechanisms. The question of whether the nucleotide biosynthesis system has its own oscillatory circuit is still open.
View Article and Find Full Text PDFFossil record of Earth describing the last 500 million years is characterized by evolution discontinuity as well as recurring global extinctions of some species and their replacement by new types, the causes of which are still debate. We developed a model of evolutionary self-development of a large ecosystem. This model of biota evolution based on the universal laws of living systems functioning: reproduction, dependence of reproduction efficiency and mortality on biota density, mutational variability in the process of reproduction and selection of the most adapted individuals.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
July 2020
Paleontologists define global extinctions on Earth as a loss of about three-quarters of plant and animal species over a relatively short period of time. At least five global extinctions are documented in the Phanerozoic fossil record (~500-million-year period): ~65, 200, 260, 380, and 440 million years ago. In addition, there is evidence of global extinctions in earlier periods of life on Earth - during the Late Cambrian (~500 million years ago) and Ediacaran periods (more than 540 million years ago).
View Article and Find Full Text PDFBackground: The regulatory feedback loops that present in structural and functional organization of molecular-genetic systems and the phenomenon of the regulatory signal delay, a time period between the moment of signal reception and its implementation, provide natural conditions for complicated dynamic regimes in these systems. The delay phenomenon at the intracellular level is a consequence of the matrix principle of data transmission, implemented through the rather complex processes of transcription and translation.However, the rules of the influence of system structure on system dynamics are not clearly understood.
View Article and Find Full Text PDFBMC Bioinformatics
September 2020
Background: The key role in the dynamic regulation of synaptic protein turnover belongs to the Fragile X Mental Retardation Protein, which regulates the efficiency of dendritic mRNA translation in response to stimulation of metabotropic glutamate receptors at excitatory synapses of the hippocampal pyramidal cells. Its activity is regulated via positive and negative regulatory loops that function in different time ranges, which is an absolute factor for the formation of chaotic regimes that lead to disrupted proteome stability. The indicated condition may cause a number of neuropsychiatric diseases, including autism and epilepsy.
View Article and Find Full Text PDF