Introduction: As humanity progresses further into space, astronauts must be increasingly independent from mission control, especially in high-consequence medical scenarios. The high-utility and low-mass nature of point-of-care ultrasound (POCUS) makes this imaging modality ideal for spaceflight mission deployment. However, POCUS operator skill degrades over time, presenting an operational barrier to continuous, effective use.
View Article and Find Full Text PDFElectronic waste (e-waste) contains substantial quantities of valuable precious metals, particularly gold (Au). However, inefficient metal recovery leads to these precious metals being discarded in landfills, causing significant water and environmental contamination. This study introduces a two-dimensional (2D) electrode with a layered graphene oxide membrane functionalized by chitosan (GO/CS).
View Article and Find Full Text PDFMetal-semiconductor metamaterials hold great promise for photocatalytic water splitting due to their excellent light harvesting in a broad spectral range as well as efficient charge carrier generation and transfer. In the majority of such metamaterials, semiconductors are used to initiate the water splitting reaction, while their metal counterparts are employed to improve light harvesting through plasmonic effects. Here, we describe for the first time an exceptional reversed case of metal-semiconductor photocatalysts in which metals are used to initiate the water splitting reaction and semiconductors are employed to improve light harvesting through the blackbody effect and serve as co-catalysts.
View Article and Find Full Text PDFThe extraction of gold (Au) from electronic waste (e-waste) has both environmental impact and inherent value. Improper e-waste disposal poses environmental and health risks, entailing substantial remediation and healthcare costs. Large efforts are applied for the recovery of Au from e-waste using complex processes which include the dissolution of Au, its adsorption in an ionic state and succeeding reduction to metallic Au.
View Article and Find Full Text PDF