Publications by authors named "V A Kenigs"

This double-blind, randomized, placebo-controlled, sequential group, phase 1 study was designed to assess in healthy men, the safety, tolerability, pharmacokinetics, and translational pharmacodynamics of JNJ-39439335 (mavatrep), a transient receptor potential vanilloid subtype 1 antagonist; it was preceded by a translational preclinical study which assessed the ability of JNJ-39439335 to block capsaicin-induced flare in rats, providing predictive pharmacokinetic and pharmacodynamic data that informed the subsequent phase 1 clinical study. The clinical study consisted of 2 parts: part 1 assessed pharmacokinetics and pharmacodynamics, including heat pain detection threshold and heat pain tolerance, of JNJ-39439335, and part 2 assessed pharmacodynamic effect of JNJ-39439335 on capsaicin-induced flare and sensory testing on naïve and UVB-sensitized skin in humans. Plasma concentrations of JNJ-39439335 peaked at approximately 2 to 4 hours postdose, then declined multiexponentially, with a prolonged terminal phase (half-life: 30-86 hours).

View Article and Find Full Text PDF

Background & Purpose: Loperamide is a selective µ opioid receptor agonist acting locally in the gastrointestinal (GI) tract as an effective anti-diarrhoeal but can cause constipation. We tested whether modulating µ opioid receptor agonism with δ opioid receptor antagonism, by combining reference compounds or using a novel compound ('MuDelta'), could normalize GI motility without constipation.

Experimental Approach: MuDelta was characterized in vitro as a potent µ opioid receptor agonist and high-affinity δ opioid receptor antagonist.

View Article and Find Full Text PDF

The opioid-like peptide nociceptin/orphanin FQ (N/OFQ) produces marked cardiovascular and renal responses after central or peripheral administration in rats. Due to their ability to behave as full/partial agonists or antagonists in different cellular and tissue assays, the present studies were performed to determine how compounds classified as N/OFQ peptide (NOP) receptor partial agonists ([F/G]N/OFQ(1-13)-NH(2), Ac-RYYRIK-NH(2), and Ac-RYYRWK-NH(2)) affect cardiovascular and renal function in vivo. In conscious Sprague-Dawley rats, intracerebroventricular (i.

View Article and Find Full Text PDF

In conscious rats, intravenous (i.v.) administration of the hexapeptide Ac-RYYRWK-NH(2), a partial agonist of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor, produces a selective water diuresis without marked cardiovascular or behavioral effects.

View Article and Find Full Text PDF

A novel ligand for the nociceptin/orphanin FQ (N/OFQ) receptor (NOP), [(pF)Phe(4),Arg(14),Lys(15)]N/OFQ-NH(2) (UFP-102), has been generated by combining in the N/OFQ-NH(2) sequence two chemical modifications, [Arg(14),Lys(15)] and [(pF)Phe(4)], that have been previously demonstrated to increase potency. In vitro, UFP-102 bound with high affinity to the human NOP receptor, showed at least 200-fold selectivity over classical opioid receptors, and mimicked N/OFQ effects in CHO(hNOP) cells, isolated tissues from various species, and mouse cortical synaptosomes releasing 5-hydroxytryptamine. UFP-102 showed similar maximal effects but higher potency (2- to 48-fold) relative to N/OFQ.

View Article and Find Full Text PDF