Redox disbalance in placental cells leads to the hyperproduction of reactive oxygen species (ROS), it mediates the dysregulation of the maternal immune tolerance to a semi-allogenic fetus, inducing pro-inflammatory reactions, and it plays a central role in perinatal complications and neonatal disease programming. Microvesicles, which provide transplacental communication between a mother and fetus, contain microRNAs (miRNAs) that are sensitive to oxidative stress (OS) mediators and can control the balance of ROS production and utilization in target cells. In the context of this paradigm, we evaluated the markers of redox balance—MDA and 4-HNE for OS and GPx, and SOD, CAT, and GSH for the antioxidant system in the cord blood plasma of newborns diagnosed with fetal growth restriction (FGR)—by using polarography, spectrophotometry, and Western blotting.
View Article and Find Full Text PDFWe studied regulation of the expression of placental growth factor (PlGF) that plays an important role in the trophoblast cells functions and reduced production of which by the placenta is associated with gestational complications. PlGF expression is regulated by transcription factors whose activity is controlled by sumoylation, which is also necessary for the formation of an adequate cellular response to hypoxia. Increased sumoylation and reduced expression of some miRNA targeted to transcription factors VEGF, GCM-1, and UBC9 conjugating SUMO with targets protein were detected in the placenta.
View Article and Find Full Text PDFOverproduction of reactive oxygen species (ROS) and, as a result, uncontrolled oxidative stress (OS) can play a central role in disorders of fetal hemodynamics and subsequent development of adverse perinatal outcomes in newborns with fetal growth restriction (FGR). Given the epigenetic nature of such disorders, the aim of our study was to evaluate the expression of miRNAs associated with OS and endothelial dysfunction (miR-27a-3p, miR-30b-5p, miR-125b-5p, miR-221-3p, miR-451a and miR-574-3p) in umbilical cord blood using real-time quantitative RT-PCR. ΜiRNA expression was evaluated in patients with FGR delivery before ( = 9 pregnant) and after 34 weeks of gestation ( = 13 pregnant), and the control groups corresponding to the main groups by gestational age (13 pregnant women in each group, respectively).
View Article and Find Full Text PDFChanges in the oxygen partial pressure caused by a violation of uteroplacental perfusion are considered a powerful inducer of a cascade of reactions leading to the clinical manifestation of preeclampsia (PE). At the same time, the induction of oxygen-dependent molecule expression, in particular, miRNA and erythropoietin, is modulated. Therefore, the focus of our study was aimed at estimating the miRNA expression profile of placental tissue and blood plasma in pregnant women with preeclampsia using deep sequencing and quantitative RT-PCR, as well as determining the concentration of erythropoietin.
View Article and Find Full Text PDF