Publications by authors named "V A Grinkevich"

Purpose: Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM-aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed.

Experimental Design: We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models.

View Article and Find Full Text PDF

Purpose: DNA polymerase theta (Polθ, encoded by the POLQ gene) is a DNA repair enzyme critical for microhomology mediated end joining (MMEJ). Polθ has limited expression in normal tissues but is frequently overexpressed in cancer cells and, therefore, represents an ideal target for tumor-specific radiosensitization. In this study we evaluate whether targeting Polθ with novel small-molecule inhibitors is a feasible strategy to improve the efficacy of radiotherapy.

View Article and Find Full Text PDF
Article Synopsis
  • POLQ is an important protein for repairing DNA double-strand breaks (DSBs) through a process called microhomology-mediated end-joining (MMEJ) and is found at higher levels in various cancers.
  • Inhibiting POLQ leads to synthetic lethality in cancer cells that lack certain repair mechanisms (like HR and Shieldin), suggesting a strong reliance on MMEJ for repair.
  • The study reveals that when POLQ is absent, cells accumulate gaps in their DNA, and POLQ works in a way that could drive genetic changes in cancer, highlighting its role in both gap sealing and overall cell survival.
View Article and Find Full Text PDF

Human DNA polymerase theta (Polθ), which is essential for microhomology-mediated DNA double strand break repair, has been proposed as an attractive target for the treatment of BRCA deficient and other DNA repair pathway defective cancers. As previously reported, we recently identified the first selective small molecule Polθ in vitro probe, (ART558), which recapitulates the phenotype of Polθ loss, and in vivo probe, (ART812), which is efficacious in a model of PARP inhibitor resistant TNBC in vivo. Here we describe the discovery, biochemical and biophysical characterization of these probes including small molecule ligand co-crystal structures with Polθ.

View Article and Find Full Text PDF