Biologically active compounds of natural or synthetic origin have a complex structure and generally contain various structural groups among which polycyclic cage amines are found. Hexaazaisowurtzitanes are representatives of these amines and studies on their biological activity began less than two decades ago, starting with research on the environmental impact of CL-20. This research helped to evaluate the risks of potential pollution in the habitat environments of living organisms and determine whether the chemical compounds in question could be utilized in pesticides, herbicides, fungicides, or medicinal drugs.
View Article and Find Full Text PDFCovalent functionalization of single-walled carbon nanotubes (SWCNTs) is a promising way to improve their photoluminescent (PL) brightness and thus make them applicable as a base material for infrared light emitters. We report as high as over two-fold enhancement of the SWCNT PL brightness by using oxygen doping via the UV photodissociation of hypochlorite ions. By analyzing the temporal evolution of the PL and Raman spectra of SWCNTs in the course of the doping process, we conclude that the enhancement of SWCNTs PL brightness depends on the homogeneity of induced quantum defects distribution over the SWCNT surface.
View Article and Find Full Text PDFAnalysis of specific pharmacological activity evaluated high antinociceptive efficacy of the first synthesized compound 10-di(ethoxyacetyl)-2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazatetracyclo[5,5,0,0,0]dodecane (ethowurtzine) in models of somatogenic pain of different genesis (thermal, visceral pain, mechanical compression of paw).The new molecule from the class of hexaazaisowurtzitane effectively blocks nociceptive reactions at the supraspinal and peripheral levels of pain sensitivity organization. The effect of ethowurtzine was comparable or exceeded the effect of tramadol.
View Article and Find Full Text PDFNovel indolocarbazole derivatives named LCS were synthesized by our research group. Two of them were selected as the most active anticancer agents in vivo. We studied the mechanisms of anticancer activity in accordance with the previously described effects of indolocarbazoles.
View Article and Find Full Text PDFThe number of candidate molecules for new non-narcotic analgesics is extremely limited. Here, we report the identification of thiowurtzine, a new potent analgesic molecule with promising application in chronic pain treatment. We describe the chemical synthesis of this unique compound derived from the hexaazaisowurtzitane (CL-20) explosive molecule.
View Article and Find Full Text PDF