The advent of spatial transcriptomics and spatial proteomics have enabled profound insights into tissue organization to provide systems-level understanding of diseases. Both technologies currently remain largely independent, and emerging same slide spatial multi-omics approaches are generally limited in plex, spatial resolution, and analytical approaches. We introduce IN-situ DEtailed Phenotyping To High-resolution transcriptomics (IN-DEPTH), a streamlined and resource-effective approach compatible with various spatial platforms.
View Article and Find Full Text PDFResident memory T cells (TRM cells) have been described in barrier tissues as having a "sensing and alarm" function where, upon sensing cognate Ag, they alarm the surrounding tissue and orchestrate local recruitment and activation of immune cells. In the immunologically unique and tightly restricted CNS, it remains unclear whether and how brain TRM cells, which express the inhibitory receptor programmed cell death protein 1 (PD-1), alarm the surrounding tissue during Ag re-encounter. Using mouse models, we reveal that TRM cells are sufficient to drive the rapid remodeling of the brain immune landscape through activation of microglia, dendritic cells, NK cells, and B cells, expansion of regulatory T cells, and recruitment of macrophages and monocytic dendritic cells.
View Article and Find Full Text PDFCells of the innate and adaptive immune systems are the progeny of haematopoietic stem and progenitor cells (HSPCs). During steady-state myelopoiesis, HSPC undergo differentiation and proliferation but are called to respond directly and acutely to various signals that lead to emergency myelopoiesis, including bone marrow ablation, infections, and sterile inflammation. There is extensive evidence that many solid tumours have the potential to secrete classical myelopoiesis-promoting growth factors and other products able to mimic emergency haematopoiesis, and to aberrantly re-direct myeloid cell development into immunosuppressive cells with tumour promoting properties.
View Article and Find Full Text PDFResident memory T cells (T ) have been described in barrier tissues as having a 'sensing and alarm' function where, upon sensing cognate antigen, they alarm the surrounding tissue and orchestrate local recruitment and activation of immune cells. In the immunologically unique and tightly restricted CNS, it remains unclear if and how brain T , which express the inhibitory receptor PD-1, alarm the surrounding tissue during antigen re-encounter. Here, we reveal that T are sufficient to drive the rapid remodeling of the brain immune landscape through activation of microglia, DCs, NK cells, and B cells, expansion of Tregs, and recruitment of macrophages and monocytic dendritic cells.
View Article and Find Full Text PDF