Background: ATP is one of the principal sympathetic neurotransmitters which contracts vascular smooth muscle cells (SMCs) via activation of ionotropic P2X receptors (P2XRs). We have recently demonstrated that contraction of the guinea pig small mesenteric arteries evoked by stimulation of P2XRs is sensitive to inhibitors of IP3 receptors (IP3Rs). Here we analyzed contribution of IP3Rs and ryanodine receptors (RyRs) to [Ca(2+)]i transients induced by P2XR agonist αβ-meATP (10 μM) in single SMCs from these vessels.
View Article and Find Full Text PDFThe effect of potential-dependent potassium uptake on reactive oxygen species (ROS) generation in mitochondria of rat brain was studied. It was found that the effect of K+ uptake on ROS production in the brain mitochondria under steady-state conditions (state 4) was determined by potassium-dependent changes in the membrane potential of the mitochondria (ΔΨm). At K+ concentrations within the range of 0-120 mM, an increase in the initial rate of K(+)-uptake into the matrix resulted in a decrease in the steady-state rate of ROS generation due to the K(+)-induced depolarization of the mitochondrial membrane.
View Article and Find Full Text PDF4-Aminopyridine is widely used as a Kv channel blocker. However, its mechanism of action is still a matter of debate. Extracellular calcium as well as 4-aminopyridine have been reported to interact with the activation kinetics of particular Kv channels.
View Article and Find Full Text PDFBackground: There is growing evidence suggesting involvement of L-type voltage-gated Ca2+ channels (VGCCs) in purinergic signaling mechanisms. However, detailed interplay between VGCCs and P2X receptors in intracellular Ca2+ mobilization is not well understood. This study examined relative contribution of the Ca2+ entry mechanisms and induced by this entry Ca2+ release from the intracellular stores engaged by activation of P2X receptors in smooth muscle cells (SMCs) from the guinea-pig small mesenteric arteries.
View Article and Find Full Text PDFThe effect of potential-dependent potassium uptake at 0-120 mM K+ on matrix Ca2+ accumulation in rat brain mitochondria was studied. An increase in oxygen consumption and proton extrusion rates as well as increase in matrix pH with increase in K+ content in the medium was observed due to K+ uptake into the mitochondria. The accumulation of Ca2+ was shown to depend on K+ concentration in the medium.
View Article and Find Full Text PDF