This study evaluates the antibacterial and antifungal effects of ethanol extracts from L. derived from freshly harvested plant biomass, including stems, leaves, flowers, and roots. The extract was analyzed using gas chromatography-mass spectrometry (GC-MS) to determine its antimicrobial activity against phytopathogenic bacteria and fungi.
View Article and Find Full Text PDFCurrently, increasing the efficiency of glioblastoma treatment is still an unsolved problem. In this study, a combination of promising approaches was proposed: (i) an application of nanotechnology approach to create a new terpene-modified lipid system (7% /), using soybean L-α-phosphatidylcholine, N-carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine for delivery of the chemotherapy drug, temozolomide (TMZ, 1 mg/mL); (ii) use of TMZ associated with natural compounds-terpenes (1% /) abietic acid and . resin ().
View Article and Find Full Text PDFAntimicrobial resistance to modern antibiotics stimulates the search for new ways to synthesize and modify antimicrobial drugs. The development of synthetic approaches that can easily change different fragments of the molecule is a promising solution to this problem. In this work, a synthetic approach was developed to obtain multivalent thiacalix[4]arene derivatives containing different number of amine and hydroxyl groups.
View Article and Find Full Text PDFBioorg Chem
December 2023
A series of new uncharged conjugates of adenine, 3,6-dimetyl-, 1,6-dimethyl- and 6-methyluracil with 1,2,4-triazole-3-hydroxamic and 1,2,3-triazole-4-hydroxamic acid moieties were synthesized and studied as reactivators of organophosphate-inhibited cholinesterase. It is shown that triazole-hydroxamic acids can reactivate acetylcholinesterase (AChE) inhibited by paraoxon (POX) in vitro, offering reactivation constants comparable to those of pralidoxime (2-PAM). However, in contrast to 2-PAM, triazole-hydroxamic acids demonstrated the ability to reactivate AChE in the brain of rats poisoned with POX.
View Article and Find Full Text PDFCerasomes are a promising modification of liposomes with covalent siloxane networks on the surface that provide outstanding morphological stability while maintaining all the useful traits of liposomes. Herein, thin film hydration and ethanol sol injection methods were utilized to produce cerasomes of various composition, which were then evaluated for the purpose of drug delivery. The most promising nanoparticles obtained by the thin film method were studied closely using MTT assay, flow cytometry and fluorescence microscopy on T98G glioblastoma cell line and modified with surfactants to achieve stability and the ability to bypass the blood-brain barrier.
View Article and Find Full Text PDF