Publications by authors named "V A Amelyushkina"

Background: The role of albuminuria as a marker of the atherosclerosis burden and a predictor of prognosis in patients with polyvascular disease (PD) has been little studied.

Aim: To evaluate the prevalence, association with atherosclerosis burden, and prognostic value of albuminuria in relation to cardiovascular and bleeding complications in patients with PD.

Materials And Methods: The data was obtained from the prospective registry REGATA-1 (NCT04347200).

View Article and Find Full Text PDF

According to phylogenetic theory of general pathology, when living in ocean all were carnivorous (piscivorous) fatty acids transferring to cells in form of non-polar triglycerides nitially began apoB-48 chylomicrons, continued lipoproteins of very low and low density and fnalized its apoB-100 endocytosis. The fatty acids are transferred by chylomicrons + lipoproteins of very low density + lipoproteins of low density and non-polar triglycerides are hydrolyzed by hepatic glycerolhydrogenase and co-enzyme apoC-III; according WHO classifcation, hyperlipoproteinemia corresponds to type V. On land, in herbivorous who are not yet synthesized insulin, apoB-48 and chylomicrons left process of non-polar triglycerides transferring.

View Article and Find Full Text PDF

In phylogenesis, the first transfer of all fatty acids to cells is implemented by high density lipoproteins. Later, unsaturated and polyene fatty acids are transferred to cell by low density lipoproteins. The insulin-depended cells absorb palmitic saturated fatty acid, oleic mono-unsaturated fatty acid and of the same name triglycerides in very low density lipoproteins.

View Article and Find Full Text PDF

The earlier insulin-independent low-density lipoproteins and more late insulin-dependent very low-density lipoproteins implement different functions at the stages of phylogenesis. The disorder of biological function of trophology, alteration of fatty acids in triglycerides, prevalence of palmitic very low-density lipoproteins over oleic very low-density lipoproteins supply mitochondria of cells with non-optimal substrate - palmitic saturated fatty acid for gaining energy, ATP synthesis. Physiologically, cells implement oleic alternative of fatty acids metabolism, oxidizing mainly ω-9 endogenous oleic mono-unsaturated fatty acid.

View Article and Find Full Text PDF

According to phylogenetic theory of general pathology, the function of low density lipoproteins (LDL) and hydrolysis of triglycerides (TG) in them under the effect of hepatic glycerol hydrolase apoC-III (HGH) developed at much earlier stages of phylogenesis than functioning of insulin-dependent phylogenetically late very low density lipoproteins (VLDL). For millions ofyears, lipolysis and HGH+apoC-III have activated transfer of polyenic fatty acids (FA) in the form of cholesteryl polyesters (CLE) from high density lipoproteins (HDL) to linoleic and linolenic LDL under the effect of cholesteryl ester transfer protein. It is reasonable to suggest that hepatocytes physiologically secrete oleic and palmitic VLDL and linoleic and linolenic LDL.

View Article and Find Full Text PDF