Publications by authors named "V A Abrikosova"

Cancer is a major global health problem. The type of malignant neoplasm and the potency of the immune response against tumors are two of the key factors influencing the outcome of the disease. The degree of tumor infiltration by lymphocytes plays an important role in antitumor response development, generally correlating with a favorable prognosis of treatment for certain cancers.

View Article and Find Full Text PDF

Identifying high-affinity antibodies in human serum is challenging due to extremely low number of circulating B cells specific to the desired antigens. Delays caused by a lack of information on the immunogenic proteins of viral origin hamper the development of therapeutic antibodies. We propose an efficient approach allowing for enrichment of high-affinity antibodies against pathogen proteins with simultaneous epitope mapping, even in the absence of structural information about the pathogenic immunogens.

View Article and Find Full Text PDF

We studied the effect of KDM5 family demethylase inhibitors (JIB-04, PBIT, and KDOAM-25) on the penetration of SARS-CoV-2 pseudotyped viruses into differentiated Caco-2 cells and HEK293T cells with ACE2 hyperexpression. The above drugs were not cytotoxic. Only KDOAM-25 significantly reduced virus entry into the cells.

View Article and Find Full Text PDF

Pemphigus vulgaris is a severe, socially significant autoimmune disease associated with autoantibodies to the desmoglein 3 antigen. The disease affects all age groups, beginning at 18 years of age; the mortality rate of pemphigus can reach as high as 50%, depending on a patient's age and a number of other factors. There is no highly selective or personalized therapy for pemphigus vulgaris at the moment.

View Article and Find Full Text PDF

Variants of SARS-CoV-2 keep emerging and causing new waves of COVID-19 around the world. Effective new approaches in drug development are based on the binding of agents, such as neutralizing monoclonal antibodies to a receptor-binding domain (RBD) of SARS-CoV-2 spike protein. However, mutations in RBD may lower the affinity of previously developed antibodies.

View Article and Find Full Text PDF