: In an ischemic stroke, the damage spreads from the infarction core to surrounding tissues. The present work was aimed at the search of effective neuroprotectors that restrict injury propagation. : We studied possible protective effects of inhibitors of protein kinases LIMK2 (T56-LIMKi), DYRK1A (harmine), and tryptophan hydroxylase (4-chlorophenylalanine) on infarction size and morphology of peri-infarct area after photothrombotic stroke (a model of ischemic stroke) in mouse brain.
View Article and Find Full Text PDFNeurotrauma is among the main causes of human disability and mortality. Nerve injury impairs not only neurons but also causes death of satellite glial cells remote from the injury site. We studied the dynamics of expression of different proapoptotic proteins (E2F1, p53, caspase 3) in the dorsal root ganglia (DRG) of a rat after sciatic nerve transection.
View Article and Find Full Text PDFNerve injury is an important reason of human disability and death. We studied the role of histone deacetylation in the response of the dorsal root ganglion (DRG) cells to sciatic nerve transection. Sciatic nerve transection in the rat thigh induced overexpression of histone deacetylase 1 (HDAC1) in the ipsilateral DRG at 1-4 h after axotomy.
View Article and Find Full Text PDFNeurotrauma is among main causes of human disability and death. We studied effects of axotomy on ultrastructure and neuronal activity of a simple model object - an isolated crayfish stretch receptor that consists of single mechanoreceptor neurons (MRN) enwrapped by multilayer glial envelope. After isolation, MRN regularly fired until spontaneous activity cessation.
View Article and Find Full Text PDFEpigenetic processes play important roles in brain responses to ischemic injury. We studied effects of photothrombotic stroke (PTS, a model of ischemic stroke) on the intracellular level and cellular localization of histone deacetylases HDAC3, HDAC4 and HDAC6 in the rat brain cortex, and tested the potential neuroprotector ability of their inhibitors. The background level of HDAC3, HDAC4 and HDAC6 in the rat cerebral cortex was relatively low.
View Article and Find Full Text PDFStroke is one of the leading reasons of human death. Ischemic penumbra that surrounds the stroke-induced infarction core is potentially salvageable, but molecular mechanisms of its formation are poorly known. Histone acetylation induces chromatin decondensation and stimulates gene expression.
View Article and Find Full Text PDFNeuron and glia death after axon transection is regulated by various signaling proteins. Protein p53 is a key regulator of diverse cell functions including stress response, DNA repair, proliferation, and apoptosis. We showed that p53 was overexpressed in crayfish ganglia after bilateral axotomy.
View Article and Find Full Text PDFUnilateral photothrombotic stroke caused tissue infarct in the mouse cerebral cortex. The injury of the cerebral cortex impaired the mouse motor activity, in particular the functional asymmetry in forelimb use. In the peri-infarct cortical tissue outside the infarct core cell apoptosis occurred at 4 and 7 days after PTS.
View Article and Find Full Text PDFIn ischemic stroke, vascular occlusion rapidly induces tissue infarct. Over the ensuing hours, damage spreads to adjacent tissue and forms transition zone (penumbra), which is potentially salvageable. Epigenetic regulation of chromatin structure controls gene expression and protein synthesis.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is used for killing of malignant cells in tumors including brain cancer. It can also damage normal neurons and glial cells. Nitric oxide (NO) is known to control PDT-induced cell death.
View Article and Find Full Text PDFIschemic stroke is the leading cause of human disability and mortality in the world. The main problem in stroke therapy is the search of efficient neuroprotector capable to rescue neurons in the potentially salvageable transition zone (penumbra), which is expanding after brain damage. The data on molecular mechanisms of penumbra formation and expression of diverse signaling proteins in the penumbra during first 24 h after ischemic stroke are discussed.
View Article and Find Full Text PDFIschemic penumbra that surrounds a stroke-induced infarction core is potentially salvageable; however, mechanisms of its formation are not well known. Covalent modifications of histones control chromatin conformation, gene expression and protein synthesis. To study epigenetic processes in ischemic penumbra, we used photothrombotic stroke (PTS), a stroke model in which laser irradiation of the rat brain cortex photosensitized by Rose Bengal induces local vessel occlusion.
View Article and Find Full Text PDFWe suggest novel experimental model of nerve injury-bilaterally axotomized ganglia of the crayfish ventral nerve cord (VNC). Using proteomic antibody microarrays, we showed upregulation of apoptosis execution proteins (Bcl-10, caspases 3, 6, and 7, SMAC/DIABLO, AIF), proapoptotic signaling proteins and transcription factors (c-Myc, p38, E2F1, p53, GADD153), and multifunctional proteins capable of initiating apoptosis in specific situations (p75, NMDAR2a) in the axotomized VNC ganglia. Simultaneously, anti-apoptotic proteins (p21WAF-1, MDM2, Bcl-x, Mcl-1, MKP1, MAKAPK2, ERK5, APP, calmodulin, estrogen receptor) were overexpressed.
View Article and Find Full Text PDFSevere nerve injury such as axotomy induces neuron degeneration and death of surrounding glial cells. Using a crayfish stretch receptor that consists of a single mechanoreceptor neuron enveloped by satellite glia, we showed that axotomy not only mechanically injures glial cells at the transection location, but also induces necrosis or apoptosis of satellite glial cells remote from the transection site. We studied Carole in spontaneous or axotomy-induced death of remote glial cells.
View Article and Find Full Text PDFThe search of effective anti-stroke neuroprotectors requires various stroke models adequate for different aspects of the ischemic processes. The photothrombotic stroke model is particularly suitable for the study of cellular and molecular mechanisms underlying neurodegeneration, neuroprotection, and neuroregeneration. It is a model of occlusion of small cerebral vessels, which provides detailed study of molecular mechanisms of ischemic cell death and useful for search of potential anti-stroke agents.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) leads to production of reactive oxygen species (ROS) and cell destruction due to oxidative stress. We used photodynamic effect of photosensitizer radachlorin to unravel the effect of photo-induced oxidative stress on the calcium signal and lipid peroxidation in primary culture of cortical neurons and astrocytes using live cell imaging. We have found that irradiation in presence of 200 nM of radachlorin induces calcium signal in primary neurons and astrocytes.
View Article and Find Full Text PDFPhotodynamic therapy is selective destruction of cells stained with a photosensitizer upon irradiation with light at a specific wavelength in the presence of oxygen. Cell death upon photodynamic treatment is known to occur mainly due to free radical production and subsequent development of oxidative stress. During photodynamic therapy of brain tumors, healthy cells are also damaged; considering this, it is important to investigate the effect of the treatment on normal neurons and glia.
View Article and Find Full Text PDFIschemic tolerance is the establishment of brain resistance to severe ischemic damage by a mild preconditioning stimulus, insufficient to irreversible tissue damage, but capable of initiating a defense response. We developed the model of focal-focal ischemic tolerance, in which the first local photothrombotic infarct (PTI) in the rat brain cortex reduced the infarct caused by second PTI applied to the contralateral cortex of the same rat 7 days later. Using antibody microarrays, we compared protein profiles in the penumbra surrounding the PTI core after single and double PTI.
View Article and Find Full Text PDFSevere mechanical nerve injury such as axotomy can lead to neuron degeneration and death of surrounding glial cells. We showed that axotomy not only mechanically injures glial cells at the cutting location, but also induces necrosis or apoptosis of satellite glial cells remote from the transection site. Therefore, axon integrity is necessary for survival of surrounding glial cells.
View Article and Find Full Text PDFNitric oxide (NO) has been recently demonstrated to enhance apoptosis of glial cells induced by photodynamic therapy (PDT), but to protect glial cells from PDT-induced necrosis in the crayfish stretch receptor, a simple neuroglial preparation that consists of a single mechanosensory neuron enveloped by satellite glial cells. We used the NO-sensitive fluorescent probe 4,5-diaminofluorescein diacetate to study the distribution and dynamics of PDT-induced NO production in the mechanosensory neuron and surrounding glial cells. The NO production in the glial envelope was higher than in the neuronal soma axon and dendrites both in control and in experimental conditions.
View Article and Find Full Text PDFIn ischemic stroke, cell damage propagates from infarct core to surrounding tissue. To reveal proteins involved in neurodegeneration and neuroprotection, we explored the protein profile in penumbra surrounding the photothrombotic infarct core induced in rat cerebral cortex by local laser irradiation after Bengal Rose administration. Using antibody microarrays, we studied changes in expression of 224 signaling proteins 1, 4, or 24 h after photothrombotic infarct compared with untreated contralateral cortex.
View Article and Find Full Text PDFAfter ischemic stroke, cell damage propagates from infarct core to surrounding tissues (penumbra). To reveal proteins involved in neurodegeneration and neuroprotection in penumbra, we studied protein expression changes in 2-mm ring around the core of photothrombotic infarct induced in the rat brain cortex by local laser irradiation after administration of Bengal Rose. The ultrastructural study showed edema and degeneration of neurons, glia, and capillaries.
View Article and Find Full Text PDF