The biological roles of nucleic acid methylation, other than at the C5-position of cytosines in CpG dinucleotides, are still not well understood. Here, we report genetic evidence for a critical role for the putative DNA demethylase NMAD-1 in regulating meiosis in C. elegans.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
Brain computer interface (BCI) technologies, which enable direct communication between the brain and external devices, have been developed. BCI technology can be utilized in neural prosthetics to restore impaired movement, including speech production. However, most of the BCI systems that have been developed are the "P300-speller" type, which can only detect objects that users direct his/her attention at.
View Article and Find Full Text PDFChromatin modification and higher-order chromosome structure play key roles in gene regulation, but their functional interplay in controlling gene expression is elusive. We have discovered the machinery and mechanism underlying the dynamic enrichment of histone modification H4K20me1 on hermaphrodite X chromosomes during C. elegans dosage compensation and demonstrated H4K20me1's pivotal role in regulating higher-order chromosome structure and X-chromosome-wide gene expression.
View Article and Find Full Text PDFPurpose: The aim of this in vitro study was to evaluate tensile bond strengths and corrosion resistance of CoCr alloys joined with gold cylinder by a soldering system in comparison with the conventional cast-joining system.
Methods: CoCr alloys joined with gold cylinder by a soldering system using a high-fusing gold solder (CoCr/Solder/Gold cylinder), gold alloy joined with gold cylinder by a cast joining system (Gold alloy/Gold cylinder) and CoCr castings were fabricated. The tensile bond strength and corrosion resistance in 0.
The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure. Here we perform genome-wide chromosome conformation capture analysis, fluorescent in situ hybridization (FISH), and RNA-seq to obtain comprehensive three-dimensional (3D) maps of the Caenorhabditis elegans genome and to dissect X chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half.
View Article and Find Full Text PDFCrossover recombination events between homologous chromosomes are required to form chiasmata, temporary connections between homologues that ensure their proper segregation at meiosis I. Despite this requirement for crossovers and an excess of the double-strand DNA breaks that are the initiating events for meiotic recombination, most organisms make very few crossovers per chromosome pair. Moreover, crossovers tend to inhibit the formation of other crossovers nearby on the same chromosome pair, a poorly understood phenomenon known as crossover interference.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2010
Live fluorescence microscopy has the unique capability to probe dynamic processes, linking molecular components and their localization with function. A key goal of microscopy is to increase spatial and temporal resolution while simultaneously permitting identification of multiple specific components. We demonstrate a new microscope platform, OMX, that enables subsecond, multicolor four-dimensional data acquisition and also provides access to subdiffraction structured illumination imaging.
View Article and Find Full Text PDFA new type of wide-field fluorescence microscopy is described, which produces 100-nm-scale spatial resolution in all three dimensions, by using structured illumination in a microscope that has two opposing objective lenses. Illumination light is split by a grating and a beam splitter into six mutually coherent beams, three of which enter the specimen through each objective lens. The resulting illumination intensity pattern contains high spatial frequency components both axially and laterally.
View Article and Find Full Text PDFCentrosome aberrations caused by misregulated centrosome maturation result in defective spindle and genomic instability. Here we report that the fission yeast homolog of the human transcription factor EAP30, Dot2, negatively regulates meiotic spindle pole body (SPB, the yeast equivalent of centrosome) maturation. dot2 mutants show excess electron-dense material accumulating near SPBs, which we refer to as aberrant microtubule organization centers (AMtOCs).
View Article and Find Full Text PDFBackground: The fission yeast Schizosaccharomyces pombe has a cylindrical cell shape, for which growth is strictly limited to both ends, and serves as an excellent model system for genetic analysis of cell-polarity determination. Previous studies identified a cell-end marker protein, Tea1, that is transported by cytoplasmic microtubules to cell tips and recruits other cell-end factors, including the Dyrk-family Pom1 kinase. The deltatea1 mutant cells cannot grow in a bipolar fashion and show T-shaped morphology after heat shock.
View Article and Find Full Text PDFThe regulation and timing of spindle pole body (SPB) duplication and maturation in fission yeast was examined by transmission electron microscopy. When cells are arrested at G1 by nitrogen starvation, the SPB is unduplicated. On release from G1, the SPBs were duplicated after 1-2 h.
View Article and Find Full Text PDFSchizosaccharomyces pombe is an excellent organism for studying microtubule dynamics owing to the presence of well-defined microtubule arrays that undergo dramatic rearrangements during various stages of the cell cycle. Using sensitive time-lapse video microscopy and kymographic analysis, we have determined the polymerization/depolymerization kinetics of individual microtubules within these arrays throughout the fission yeast cell cycle. Interphase bundles are composed of 4-7 microtubules that act autonomously, demonstrating that individual microtubules are responsible for mediating the functions ascribed to these arrays.
View Article and Find Full Text PDFHuman damaged DNA-binding protein (DDB) is a heterodimer of p48/DDB2 and p127/DDB1 subunits. Mutations in DDB2 are responsible for Xeroderma Pigmentosum group E, but no mutants of mammalian DDB1 have been described. To study DDB1, the Schizosaccharomyces pombe DDB1 sequence homologue (ddb1(+)) was cloned, and a ddb1 deletion strain was constructed.
View Article and Find Full Text PDFIn meiotic prophase of many eukaryotic organisms, telomeres attach to the nuclear envelope and form a polarized configuration called the bouquet. Bouquet formation is hypothesized to facilitate homologous chromosome pairing. In fission yeast, bouquet formation and telomere clustering occurs in karyogamy and persists throughout the horsetail stage.
View Article and Find Full Text PDFThe fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we have fused GFP to the chromodomain protein Swi6p, thus allowing nuclear and chromosome behaviour to be followed in living cells using time-lapse fluorescence microscopy. Like endogenous Swi6p, GFP-Swi6p localises to the nucleus and is concentrated at the heterochromatic centromeres and telomeres.
View Article and Find Full Text PDFSpectroscopic properties, amino acid sequence, electron transfer kinetics, and crystal structures of the oxidized (at 1.7 A resolution) and reduced form (at 1.8 A resolution) of a novel plastocyanin from the fern Dryopteris crassirhizoma are presented.
View Article and Find Full Text PDFStatement Of Problem: The implant level impression can shorten the overall time frame of implant treatment.
Purpose Of Study: The purpose of this study was to analyze the accuracy of fixed partial dentures constructed from impressions taken at implant installation surgery in partially edentulous dogs. The study compared the fit of welded titanium fixed partial dentures with that of cast gold alloy fixed partial dentures.
Charged amino acid residues of human RCC1 were converted to alanine and mutants which were unable to complement tsBN2 cells (a temperature-sensitive rcc1- mutant of the hamster BHK21 cell line) were selected. These RCC1 mutants were analyzed for the ability to inhibit premature chromatin condensation by microinjection into tsBN2 cells, and their steady-state kinetic parameters for guanine nucleotide exchange reaction were measured. Examined RCC1 mutants were unstable in tsBN2 cells at the restrictive temperature, yet they significantly inhibited premature chromatin condensation.
View Article and Find Full Text PDFFluorescence in situ hybridization (FISH) shows that fission yeast centromeres and telomeres make up specific spatial arrangements in the nucleus. Their positioning and clustering are cell cycle regulated. In G2, centromeres cluster adjacent to the spindle pole body (SPB), while in mitosis, their association with each other and with the SPB is disrupted.
View Article and Find Full Text PDFThe RCC1 protein that is required for coupling mitosis with the S phase has a DNA-binding domain in the N-terminal region outside the repeat. We found that RCC1 protein without any DNA-binding activity complemented the tsBN2 mutation with the same efficiency as that of intact RCC1 protein. In ts+ transformants of tsBN2 cells transfected with the RCC1 cDNA lacking the DNA-binding domain, an endogenous RCC1 disappeared at 39.
View Article and Find Full Text PDFEntry into mitosis is triggered by activation of maturation promoting factor and a complex of p34cdc2 kinase and cyclin B. Activation induces nuclear lamina breakdown, chromosome condensation and mitotic spindle assembly. Exit from mitosis is initiated by the degradation of cyclin B and the subsequent inactivation of maturation-promoting factor.
View Article and Find Full Text PDFThe nucleolar and centromeric DNAs of the fission yeast Schizosaccharomyces pombe were visualized in the nucleus by fluorescence in situ hybridization using repetitive ribosomal and centromeric DNAs as the probes. The rDNAs were seen in the nuclear domain previously assigned as nucleolar, that is, the region into which the rod-like chromatin protrudes from the hemispherical chromosomal domain. Using mitotically-arrested cells containing condensed chromosomes, it was demonstrated that the rDNAs were present on the smallest chromosome III, consistent with genetic data.
View Article and Find Full Text PDFgamma-Tubulin exists in fission yeast as the product of an essential gene, encoding a 446 amino acid protein that is 77.3% identical to Aspergillus nidulans gamma-tubulin. The gene disruption caused cell lethality, displaying condensed, undivided chromosomes with aberrant spindle structures.
View Article and Find Full Text PDFMutations in the fission yeast cut1+, cut2+, and cut10+ genes uncouple normally coordinated mitotic events and deregulate, rather than arrest, mitosis. DNA synthesis continues, making polyploid nuclei with several spindles. Multiple, aberrant spindle pole bodies (SPBs) are produced in cut1 mutant cells.
View Article and Find Full Text PDFWe cloned the structural gene topl+ for Schizosaccharomyces pombe DNA topoisomerase I (topo I) by hybridization. An eight-fold increase of topo I relaxing activity was obtained in S. pombe cells transformed with multicopy plasmid with topl+ insert.
View Article and Find Full Text PDF