Objective: The study aims to assess the effects of a 10% HO bleaching gel with different MnO concentrations on the bleaching efficacy (BE), degradation kinetics (DK) of HO, and trans-amelodentinal cytotoxicity (TC).
Materials And Methods: Standardized bovine enamel/dentin disks (n = 96) were placed in artificial pulp chambers, and the bleaching gels were applied for 45 min. Thus, the following groups were established: (G1) no treatment (negative control/NC); (G2) 35% HO (positive control/PC); (G3) 10% HO; (G4) 10% HO + 2 mg/mL MnO; (G5) 10% HO + 6 mg/mL MnO; and (G6) 10% HO + 10 mg/mL MnO.
Objective: This study was designed for the chemical activation of a 35% hydrogen peroxide (H2O2) bleaching gel to increase its whitening effectiveness and reduce its toxicity.
Methodology: First, the bleaching gel - associated or not with ferrous sulfate (FS), manganese chloride (MC), peroxidase (PR), or catalase (CT) - was applied (3x 15 min) to enamel/dentin discs adapted to artificial pulp chambers. Then, odontoblast-like MDPC-23 cells were exposed for 1 h to the extracts (culture medium + components released from the product), for the assessment of viability (MTT assay) and oxidative stress (H2DCFDA).
Introduction: The improvement of biomaterials capable of driving the regeneration of the pulp-dentin complex mediated by resident cells is the goal of regenerative dentistry. In the present investigation, a chitosan scaffold (CHSC) that released bioactive concentrations of simvastatin (SIM) was tested, aimed at the development of a cell-free tissue engineering system.
Methods: First, we performed a dose-response assay to select the bioactive dose of SIM capable of inducing an odontoblastic phenotype in dental pulp cells (DPCs); after which we evaluated the synergistic effect of this dosage with the CHSC/DPC construct.