We synthesized two new gemini analogues, and , that incorporate a modified longer side chain containing a cyclopropane group. The evaluation of the bioactivities of the two gemini analogues indicated that the 17,20 threo (20) compound, , is the most active one and is as active as 1,25(OH)D. Docking and molecular dynamics (MD) data showed that the compounds bind efficiently to vitamin D receptor (VDR) with to form an energetically more favorable interaction with His397.
View Article and Find Full Text PDFWe report a blueprint for the rational design of G protein coupled receptor (GPCR) ligands with a tailored functional response. The present study discloses the structure-based design of cannabinoid receptor type 2 (CBR) selective inverse agonists ()- and ()-, which were derived from privileged agonist HU-308 by introduction of a phenyl group at the -dimethylheptyl side chain. Epimer ()- exhibits high affinity for CBR with = 39.
View Article and Find Full Text PDFIntense synthetic efforts have been directed towards the development of noncalcemic analogs of 1,25-dihydroxyvitamin D. We describe here the structural analysis and biological evaluation of two derivatives of 1,25-dihydroxyvitamin D with modifications limited to the replacement of the 25-hydroxyl group by a 25-amino or 25-nitro groups. Both compounds are agonists of the vitamin D receptor.
View Article and Find Full Text PDFAn unexpected ring expansion that converts hydrindanes into decalins via an unprecedented dyotropic reaction involving a mesylate group has been observed, and this paved the way for easy access to polyfunctionalized chiral decalins. These polyfunctionalized chiral decalins can be very useful building blocks for the synthesis of the thia analogues of many natural compounds. They can also be used in asymmetric catalysis and also in the synthesis of the new analogues of vitamin D with a modified D ring and side chain.
View Article and Find Full Text PDF