Inhalers spray over 100 million drug particles into the mouth, where a significant portion of the drug may deposit. Understanding how the complex interplay between particle and solid phases influence deposition is crucial for optimising treatments. Existing modelling studies neglect any effect of particle momentum on the fluid (one-way coupling), which may cause poor prediction of forces acting on particles.
View Article and Find Full Text PDFFor the one billion sufferers of respiratory disease, managing their disease with inhalers crucially influences their quality of life. Generic treatment plans could be improved with the aid of computational models that account for patient-specific features such as breathing pattern, lung pathology and morphology. Therefore, we aim to develop and validate an automated computational framework for patient-specific deposition modelling.
View Article and Find Full Text PDFMicrodamage accumulated through sustained periods of cyclic loading or single overloading events contributes to bone fragility through a reduction in stiffness and strength. Monitoring microdamage in vivo remains unattainable by clinical imaging modalities. As such, there are no established computational methods for clinical fracture risk assessment that account for microdamage that exists in vivo at any specific timepoint.
View Article and Find Full Text PDFThe development of treatment strategies for skeletal diseases relies on the understanding of bone mechanical properties in relation to its structure at different length scales. At the microscale, indention techniques can be used to evaluate the elastic, plastic, and fracture behaviour of bone tissue. Here, we combined in situ high-resolution SRµCT indentation testing and digital volume correlation to elucidate the anisotropic crack propagation, deformation, and fracture of ovine cortical bone under Berkovich and spherical tips.
View Article and Find Full Text PDFThe hierarchical design of bio-based nanostructured materials such as bone enables them to combine unique structure-mechanical properties. As one of its main components, water plays an important role in bone's material multiscale mechanical interplay. However, its influence has not been quantified at the length-scale of a mineralised collagen fibre.
View Article and Find Full Text PDFBone regeneration in critical-sized defects is a clinical challenge, with biomaterials under constant development aiming at enhancing the natural bone healing process. The delivery of bone morphogenetic proteins (BMPs) in appropriate carriers represents a promising strategy for bone defect treatment but optimisation of the spatial-temporal release is still needed for the regeneration of bone with biological, structural, and mechanical properties comparable to the native tissue. Nonlinear micro finite element (μFE) models can address some of these challenges by providing a tool able to predict the biomechanical strength and microdamage onset in newly formed bone when subjected to physiological or supraphysiological loads.
View Article and Find Full Text PDFOcean acidification is a threat to deep-sea corals and could lead to dramatic and rapid loss of the reef framework habitat they build. Weakening of structurally critical parts of the coral reef framework can lead to physical habitat collapse on an ecosystem scale, reducing the potential for biodiversity support. The mechanism underpinning crumbling and collapse of corals can be described via a combination of laboratory-scale experiments and mathematical and computational models.
View Article and Find Full Text PDFFor many of the one billion sufferers of respiratory diseases worldwide, managing their disease with inhalers improves their ability to breathe. Poor disease management and rising pollution can trigger exacerbations that require urgent relief. Higher drug deposition in the throat instead of the lungs limits the impact on patient symptoms.
View Article and Find Full Text PDFBone is an intriguingly complex material. It combines high strength, toughness and lightweight via an elaborate hierarchical structure. This structure results from a biologically driven self-assembly and self-organisation, and leads to different deformation mechanisms along the length scales.
View Article and Find Full Text PDFThe underlying constraint of ultrashort pulsed laser ablation in both the clinical and micromachining setting is the uncertainty regarding the impact on the composition of material surrounding the ablated region. A heat model representing the laser-tissue interaction was implemented into a finite element suite to assess the cumulative temperature response of bone during ultrashort pulsed laser ablation. As an example, we focus on the extraction of mineralised collagen fibre micropillars.
View Article and Find Full Text PDFBone metabolic diseases such as osteoporosis constitute a major socio-economic challenge. A detailed understanding of the structure-property relationships of bone's underlying hierarchical levels has the potential to improve diagnosis and the ability to treat those diseases, especially with regards to the onset of failure. Therefore, elastic and yield properties of mineralised turkey leg tendon (MTLT), a mineralised tissue that is similar to bone but has a simpler multiscale structure, were investigated.
View Article and Find Full Text PDFThe increasing incidence of osteoporotic bone fractures makes fracture risk prediction an important clinical challenge. Computational models can be utilised to facilitate such analyses. However, they critically depend on bone's underlying hierarchical material description.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
April 2019
Objectives: Dental implants are widely used to restore function and appearance. It may be essential to choose the appropriate drilling protocol and implant design in order to optimise primary stability. This could be achieved based on an assessment of the implantation site with respect to bone quality and objective biomechanical descriptors such as stiffness and strength of the bone-implant system.
View Article and Find Full Text PDFFacet joint osteoarthritis is a prominent feature of degenerative spine disorders, highly prevalent in ageing populations, and considered a major cause for chronic lower back pain. Since there is no targeted pharmacological therapy, clinical management of disease includes analgesic or surgical treatment. The specific cellular, molecular, and structural changes underpinning facet joint osteoarthritis remain largely elusive.
View Article and Find Full Text PDFUnlabelled: Bone features a hierarchical architecture combining antagonistic properties like toughness and strength. In order to better understand the mechanisms leading to this advantageous combination, its postyield and failure behaviour was analyzed on the length scale of a single lamella. Micropillars were compressed to large strains under hydrated conditions to measure their anisotropic yield and post-yield behaviour.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2017
Low bone strength is a major risk factor for osteoporotic fractures and is only partially determined by clinical densitometry. Accumulated micro-damage induces residual strains, degrades elastic modulus and reduces bone strength independently of bone mineral density. Histologically, overloading of bone in compression and tension leads to distinct crack size, distribution and orientation which interact during combined loading scenarios.
View Article and Find Full Text PDFBiomech Model Mechanobiol
June 2017
A new three-dimensional (3D) multiscale micromechanical model has been suggested as adept at predicting the overall linear anisotropic mechanical properties of a vertebral trabecular bone (VTB) highly porous microstructure. A nested 3D modeling analysis framework spanning the multiscale nature of the VTB is presented herein. This hierarchical analysis framework employs the following micromechanical methods: the 3D parametric high-fidelity generalized method of cells (HFGMC) as well as the 3D sublaminate model.
View Article and Find Full Text PDFOsteoporosis leads to bone fragility and represents a major health problem in our aging societies. Bone is a quasi-brittle hierarchical composite that exhibits damage with distinct crack morphologies in compression and tension when overloaded. A recent study reported the complex damage response of bovine compact bone under four different cyclic overloading experiments combining compression and tension.
View Article and Find Full Text PDFThe growing incidence of skeletal fractures poses a significant challenge to ageing societies. Since a major part of physiological loading in the lower limbs is carried by cortical bone, it would be desirable to better understand the structure-mechanical property relationships and scale effects in this tissue. This study aimed at assessing whether microindentation properties combined with chemical and morphological information are usable to predict macroscopic elastic and strength properties in a donor- and site-matched manner.
View Article and Find Full Text PDFAgeing and associated skeletal diseases pose a significant challenge for health care systems worldwide. Age-related fractures have a serious impact on personal, social and economic wellbeing. A significant proportion of physiological loading is carried by the cortical shell.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
September 2015
Skeletal diseases such as osteoporosis impose a severe socio-economic burden to ageing societies. Decreasing mechanical competence causes a rise in bone fracture incidence and mortality especially after the age of 65 y. The mechanisms of how bone damage is accumulated under different loading modes and its impact on bone strength are unclear.
View Article and Find Full Text PDFAgeing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons.
View Article and Find Full Text PDF