The inverse electron demand Diels-Alder conjugation reaction has gained increasing importance over the past few years for efficient in vivo and ex vivo radiometal labeling of antibodies. However, the application of this very fast reaction type has not been studied for radiolabeling of peptides so far. We show here the synthesis of 3-benzyl-1,2,4,5-tetrazine-comprising ((1,4,7,10-tetraazacyclododecane-4,7,10-triyl)triacetic acid-1-glutaric acid) (DOTA-GA) and ((1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid) (NODA-GA) chelators and their radiometal labeling with Ga and Cu.
View Article and Find Full Text PDFIntroduction: Gastrointestinal stromal tumors (GIST) have a wide range of mutations, but can mostly be treated with Imatinib, until eventually resistance towards this tyrosine kinase inhibitor is acquired. Early and non-invasive determination of the sensitivity of the tumor and its metastases towards Imatinib by positron emission tomography (PET) would be beneficial for therapy planning and monitoring.
Methods: We developed a synthesis strategy towards the precursor molecule, performed the F-synthesis and in the following evaluated the radioligand in vitro regarding its lipophilicity, stability and biological activity (KIT binding properties) as well as its in vivo properties in GIST tumor-bearing mice.
Zirconium-89 is a positron-emitting radionuclide of high interest for medical imaging applications with positron emission tomography (PET). For the introduction of this radiometal into biologically active targeting vectors, the chelating agent desferrioxamine B (DFO) is commonly applied. However, DFO is known to form Zr complexes of limited in vivo stability.
View Article and Find Full Text PDFFor (64) Cu radiolabeling of biomolecules to be used as in vivo positron emission tomography (PET) imaging agents, various chelators are commonly applied. It has not yet been determined which of the most potent chelators--NODA-GA ((1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid), CB-TE2A (2,2'-(1,4,8,11-tetraazabicyclo[6.6.
View Article and Find Full Text PDFMolecular imaging--and especially positron emission tomography (PET)--has gained increasing importance for diagnosis of various diseases and thus experiences an increasing dissemination. Therefore, there is also a growing demand for highly affine PET tracers specifically accumulating and visualizing target structures in the human body. Beyond the development of agents suitable for PET alone, recent tendencies aim at the synthesis of bimodal imaging probes applicable in PET as well as optical imaging (OI), as this combination of modalities can provide clinical advantages.
View Article and Find Full Text PDFMolecular imaging-and especially Positron Emission Tomography (PET)-is of increasing importance for the diagnosis of various diseases and thus is experiencing increasing dissemination. Consequently, there is a growing demand for appropriate PET tracers which allow for a specific accumulation in the target structure as well as its visualization and exhibit decay characteristics matching their in vivo pharmacokinetics. To meet this demand, the development of new targeting vectors as well as the use of uncommon radionuclides becomes increasingly important.
View Article and Find Full Text PDF