Publications by authors named "Uwe Radelof"

Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution.

View Article and Find Full Text PDF

A number of fundamental technical developments like the evolvement of oligonucleotide microarrays, new sequencing technologies and gene synthesis have considerably changed the character of genomic biological resource centres in recent years. While genomic biological resource centres traditionally served mainly as providers of sparsely characterized cDNA clones and clone sets, there is nowadays a clear tendency towards well-characterized, high-quality clones. In addition, major new service units like microarray services have developed, which are completely independent of clone collections, reflecting the co-evolution of data generation and technology development.

View Article and Find Full Text PDF

Crohn disease (CD), a sub-entity of inflammatory bowel disease (IBD), is a complex polygenic disorder. Although recent studies have successfully identified CD-associated genetic variants, these susceptibility loci explain only a fraction of the heritability of the disease. Here, we report on a multi-stage genome-wide scan of 393 German CD cases and 399 controls.

View Article and Find Full Text PDF

A key issue in RNA amplification techniques is the preservation of original transcript abundance, however popular high-grade RNA amplification methods lack sufficient validation regarding the potential bias of gene expression profiles. This study evaluated a double-round T7-based and a PCR-based amplification protocol, using the Affymetrix GeneChip platform. Both small sample methods performed excellently in terms of yield and reproducibility (r>0.

View Article and Find Full Text PDF

Peptide nucleic acid (PNA) is a novel class of DNA analogues in which the entire sugar-phosphate backbone is replaced by a pseudopeptide counterpart. Owing to its neutral character and the consequent lack of electrostatic repulsion, PNA exhibits very stable heteroduplex formation with complementary nucleic acid that is essentially ionic strength independent and enables hybridization under minimum salt conditions. This feature as well as its superior ion stability and easy ionization compared to DNA renders PNA very attractive for hybridization-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) applications.

View Article and Find Full Text PDF

Access to the complete gene inventory of an organism is crucial to understanding physiological processes like development, differentiation, pathogenesis, or adaptation to the environment. Transcripts from many active genes are present at low copy numbers. Therefore, procedures that rely on random EST sequencing or on normalisation and subtraction methods have to produce massively redundant data to get access to low-abundance genes.

View Article and Find Full Text PDF

We developed a novel efficient scheme, DEFOG (for "deciphering families of genes"), for determining sequences of numerous genes from a family of interest. The scheme provides a powerful means to obtain a gene family composition in species for which high-throughput genomic sequencing data are not available. DEFOG uses two key procedures.

View Article and Find Full Text PDF

Unlabelled: Xdigitise is a software system for visualization of hybridization experiments giving the user facilities to analyze the corresponding images manually or automatically. Images of the high-density DNA arrays are displayed as well as the results of an external image analysis bundled with Xdigitise, e.g.

View Article and Find Full Text PDF