Publications by authors named "Uwe Niedermayer"

We demonstrate a silicon-based electron accelerator that uses laser optical near fields to both accelerate and confine electrons over extended distances. Two dielectric laser accelerator (DLA) designs were tested, each consisting of two arrays of silicon pillars pumped symmetrically by pulse front tilted laser beams, designed for average acceleration gradients 35 and 50  MeV/m, respectively. The DLAs are designed to act as alternating phase focusing (APF) lattices, where electrons, depending on the electron-laser interaction phase, will alternate between opposing longitudinal and transverse focusing and defocusing forces.

View Article and Find Full Text PDF

The concept of dielectric-laser acceleration (DLA) provides the highest gradients among breakdown-limited (nonplasma) particle accelerators and thus the potential of miniaturization. The implementation of a fully scalable electron accelerator on a microchip by two-dimensional alternating phase focusing (APF), which relies on homogeneous laser fields and external magnetic focusing in the third direction, was recently proposed. In this Letter, we generalize the APF for DLA scheme to 3D, such that stable beam transport and acceleration is attained without any external equipment, while the structures can still be fabricated by entirely two-dimensional lithographic techniques.

View Article and Find Full Text PDF

Dielectric laser acceleration is a versatile scheme to accelerate and control electrons with the help of femtosecond laser pulses in nanophotonic structures. We demonstrate here the generation of a train of electron pulses with individual pulse durations as short as 270±80  attoseconds (FWHM), measured in an indirect fashion, based on two subsequent dielectric laser interaction regions connected by a free-space electron drift section, all on a single photonic chip. In the first interaction region (the modulator), an energy modulation is imprinted on the electron pulse.

View Article and Find Full Text PDF

Net acceleration of attosecond-scale electron pulses is critical to the development of on-chip accelerators. We demonstrate a silicon-based laser-driven two-stage accelerator as an injector stage prototype for a Dielectric Laser Accelerator (DLA). The first stage converts a 57-keV (500±100)-fs (FWHM) electron pulse into a pulse train of 700±200 as (FWHM) microbunches.

View Article and Find Full Text PDF

We describe an application of laser-driven modulation in a dielectric micro-structure for the electron beam in a free-electron laser (FEL). The energy modulation is transferred into longitudinal bunching via compression in a magnetic chicane before entering the undulator section of the FEL. The bunched electron beam comprises a series of enhanced current spikes separated by the wavelength of the modulating laser.

View Article and Find Full Text PDF

We demonstrate a laser-driven, tunable electron lens fabricated in monolithic silicon. The lens consists of an array of silicon pillars pumped symmetrically by two 300 fs, 1.95  μm wavelength, nJ-class laser pulses from an optical parametric amplifier.

View Article and Find Full Text PDF

We report on the efficacy of a novel design for dielectric laser accelerators by adding a distributed Bragg reflector (DBR) to a dual pillar grating accelerating structure. This mimics a double-sided laser illumination, resulting in an enhanced longitudinal electric field while reducing the deflecting transverse effects when compared to single-sided illumination. We improve the coupling efficiency of the incident electric field into the accelerating mode by 57%.

View Article and Find Full Text PDF

The concept of dielectric-laser acceleration provides the highest gradients among breakdown-limited (nonplasma) particle accelerators. However, stable beam transport and staging have not been shown experimentally yet. We present a scheme that confines the beam longitudinally and in one transverse direction.

View Article and Find Full Text PDF