Background: The sacroiliac joint fixation is the last resort for patients with prolonged and severe joint pain. Although the clinical results of anterior fixations are conclusive, there exist several inevitable drawbacks with the surgical method such as the difficulty performing the surgery due to the presence of many organs. The posterior fixation technique has thus been developed to overcome those inconveniences.
View Article and Find Full Text PDFBackground: The ligaments in coherence with the capsule of the hip joint are known to contribute to hip stability. Nevertheless, the contribution of the mechanical properties of the ligaments and gender- or side-specific differences are still not completely clear. To date, comparisons of the hip capsule ligaments to other tissues stabilizing the pelvis and hip joint, e.
View Article and Find Full Text PDFSurgical stabilization of the pelvis following type II anteroposterior compression pelvic injuries (APCII) is based on the assumption that the anterior sacroiliac, sacrospinous, and sacrotuberous ligaments disrupt simultaneously. Recent data on the ligaments contradict this concept. We aimed at determining the mechanisms of ligament failure in APCII computationally.
View Article and Find Full Text PDFPelvic ring stability is maintained passively by both the osseous and the ligamentous apparatus. Therapeutic approaches focus mainly on fracture patterns, so ligaments are often neglected. When they rupture along with the bone after pelvic ring fractures, disrupting stability, ligaments need to be considered during reconstruction and rehabilitation.
View Article and Find Full Text PDFBackground Context: The influence of the posterior pelvic ring ligaments on pelvic stability is poorly understood. Low back pain and sacroiliac joint (SIJ) pain are described being related to these ligaments. Computational approaches involving finite element (FE) modeling may aid to determine their influence.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2012
Background And Aims: To understand biomechanics of ligaments and tendons data on their material properties are necessary. The iliotibial tract is a suitable model for virtual pelvic or lower extremity ligaments due to its parallel fibers, which facilitates biomechanical testing. Here, we determined Young's modulus (YM) as secant stiffness between defined limits of the iliotibial tract and correlated the data to ultimate stress (US) of the specimens and to age, gender and body weight of the body donors.
View Article and Find Full Text PDFBackground And Objective: The iliotibial tract (tract) is an important structure for the biomechanics of both the hip and knee joint. While a detailed characterization of its mechanical properties might help to better understand its specific role in the load transfer from the pelvis to femur and tibia, determination of those properties is complicated by its particular structure of thin fibers in the fresh state. Moreover, although the tracts mechanical properties are often derived from cadaveric material chemically fixed with either ethanol or formaldehyde, the influence of such fixation methods remains to be elucidated.
View Article and Find Full Text PDF