Publications by authors named "Uwe Kuhn"

Daytime HONO photolysis is an important source of atmospheric hydroxyl radicals (OH). Knowledge of HONO formation chemistry under typical haze conditions, however, is still limited. In the Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain in 2018, we investigated the wintertime HONO formation and its atmospheric implications at a rural site Gucheng.

View Article and Find Full Text PDF

Accurate determination of acidity (pH) and ion activities in aqueous droplets is a major experimental and theoretical challenge for understanding and simulating atmospheric multiphase chemistry. Here, we develop a ratiometric Raman spectroscopy method to measure the equilibrium concentration of sulfate (SO) and bisulfate (HSO) in single microdroplets levitated by aerosol optical tweezers. This approach enables determination of ion activities and pH in aqueous sodium bisulfate droplets under highly supersaturated conditions.

View Article and Find Full Text PDF

The 3' ends of almost all eukaryotic mRNAs are generated in an essential two-step processing reaction: endonucleolytic cleavage of an extended precursor followed by the addition of a poly(A) tail. By reconstituting the reaction from overproduced and purified proteins, we provide a minimal list of 14 polypeptides that are essential and two that are stimulatory for RNA processing. In a reaction depending on the polyadenylation signal AAUAAA, the reconstituted system cleaves pre-mRNA at a single preferred site corresponding to the one used in vivo.

View Article and Find Full Text PDF

Nitrous acid (HONO) is an important component of the global nitrogen cycle and can regulate the atmospheric oxidative capacity. Soil is an important source of HONO. [HONO]*, the equilibrium gas-phase concentration over the aqueous solution of nitrous acid in the soil, has been suggested as a key parameter for quantifying soil fluxes of HONO.

View Article and Find Full Text PDF

Aqueous extracts of biogenic secondary organic aerosols (BSOAs) have been found to exhibit fluorescence that may interfere with the laser/light-induced fluorescence (LIF) detection of primary biological aerosol particles (PBAPs). In this study, we quantified the interference of BSOAs to PBAPs by directly measuring airborne BSOA particles, rather than aqueous extracts. BSOAs were generated by the reaction of -limonene (LIM) or α-pinene (PIN) and ozone (O) with or without ammonia in a chamber under controlled conditions.

View Article and Find Full Text PDF

Fine-particle pollution associated with winter haze threatens the health of more than 400 million people in the North China Plain. The Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain (McFAN) investigated the physicochemical mechanisms leading to haze formation with a focus on the contributions of multiphase processes in aerosols and fogs. We integrated observations on multiple platforms with regional and box model simulations to identify and characterize the key oxidation processes producing sulfate, nitrate and secondary organic aerosols.

View Article and Find Full Text PDF

Characteristic particle size, fluorescence intensity, and fluorescence spectra are important features to detect and categorize bioaerosols. A prototype size-resolved single-particle fluorescence spectrometer (S2FS) was developed to simultaneously measure aerodynamic diameters and fluorescence spectra. Emission spectra are dispersed in 512 channels from 370 to 610 nm, where a major portion of biological fluorescence emission occurs.

View Article and Find Full Text PDF

Cleavage factor II (CF II) is a poorly characterized component of the multiprotein complex catalyzing 3' cleavage and polyadenylation of mammalian mRNA precursors. We have reconstituted CF II as a heterodimer of hPcf11 and hClp1. The heterodimer is active in partially reconstituted cleavage reactions, whereas hClp1 by itself is not.

View Article and Find Full Text PDF

The nuclear poly(A) binding protein (PABPN1) has been suggested, on the basis of biochemical evidence, to play a role in mRNA polyadenylation by strongly increasing the processivity of poly(A) polymerase. While experiments in metazoans have tended to support such a role, the results were not unequivocal, and genetic data show that the ortholog of PABPN1, Pab2, is not involved in mRNA polyadenylation. The specific model in which PABPN1 increases the rate of poly(A) tail elongation has never been examined in vivo.

View Article and Find Full Text PDF

Cleavage and polyadenylation specificity factor (CPSF) is the central component of the 3' processing machinery for polyadenylated mRNAs in metazoans: CPSF recognizes the polyadenylation signal AAUAAA, providing sequence specificity in both pre-mRNA cleavage and polyadenylation, and catalyzes pre-mRNA cleavage. Here we show that of the seven polypeptides that have been proposed to constitute CPSF, only four (CPSF160, CPSF30, hFip1, and WDR33) are necessary and sufficient to reconstitute a CPSF subcomplex active in AAUAAA-dependent polyadenylation, whereas CPSF100, CPSF73, and symplekin are dispensable. WDR33 is required for binding of reconstituted CPSF to AAUAAA-containing RNA and can be specifically UV cross-linked to such RNAs, as can CPSF30.

View Article and Find Full Text PDF

Research studies aimed at advancing cancer prevention, diagnosis, and treatment depend on a number of key resources, including a ready supply of high-quality annotated biospecimens from diverse ethnic populations that can be used to test new drugs, assess the validity of prognostic biomarkers, and develop tailor-made therapies. In November 2011, KHCCBIO was established at the King Hussein Cancer Center (KHCC) with the support of Seventh Framework Programme (FP7) funding from the European Union (khccbio.khcc.

View Article and Find Full Text PDF

Asymmetric dimethylation of arginine side chains is a common post-translational modification of eukaryotic proteins, which serves mostly to regulate protein-protein interactions. The modification is catalyzed by type I protein arginine methyltransferases, PRMT1 being the predominant member of the family. Determinants of substrate specificity of these enzymes are poorly understood.

View Article and Find Full Text PDF

Oculopharyngeal muscular dystrophy is a late-onset disease caused by an elongation of a natural 10-alanine segment within the N-terminal domain of the nuclear poly(A)-binding protein 1 (PABPN1) to maximally 17 alanines. The disease is characterized by intranuclear deposits consisting primarily of PABPN1. In previous studies, we could show that the N-terminal domain of PABPN1 forms amyloid-like fibrils.

View Article and Find Full Text PDF

Alternative cleavage and polyadenylation (APA) is emerging as an important layer of gene regulation. Factors controlling APA are largely unknown. We developed a reporter-based RNAi screen for APA and identified PABPN1 as a regulator of this process.

View Article and Find Full Text PDF

Chemical crosslinking in combination with mass spectrometry has matured into an alternative approach to derive low-resolution structural information of proteins and protein complexes. Yet, one of the major drawbacks of this strategy remains the lack of software that is able to handle the large MS datasets that are created after chemical crosslinking and enzymatic digestion of the crosslinking reaction mixtures. Here, we describe a software, termed StavroX, which has been specifically designed for analyzing highly complex crosslinking datasets.

View Article and Find Full Text PDF

The nuclear poly(A) binding protein, PABPN1, promotes mRNA polyadenylation in the cell nucleus by increasing the processivity of poly(A) polymerase and contributing to poly(A) tail length control. In its C-terminal domain, the protein carries 13 arginine residues that are all asymmetrically dimethylated. The function of this modification in PABPN1 has been unknown.

View Article and Find Full Text PDF

Poly(A) tails of mRNAs are synthesized in the cell nucleus with a defined length, approximately 250 nucleotides in mammalian cells. The same type of length control is seen in an in vitro polyadenylation system reconstituted from three proteins: poly(A) polymerase, cleavage and polyadenylation specificity factor (CPSF), and the nuclear poly(A)-binding protein (PABPN1). CPSF, binding the polyadenylation signal AAUAAA, and PABPN1, binding the growing poly(A) tail, cooperatively stimulate poly(A) polymerase such that a complete poly(A) tail is synthesized in one processive event, which terminates at a length of approximately 250 nucleotides.

View Article and Find Full Text PDF

Asymmetric dimethylation of arginine residues is a common posttranslational modification of proteins carried out by type I protein arginine methyltransferases, including PRMT1 and -3. We report that the consecutive transfer of two methyl groups to a single arginine side chain by PRMT1 and -3 occurs in a distributive manner, i.e.

View Article and Find Full Text PDF

The heterodimeric HIF (hypoxia-inducible factor)-1 is a transcriptional master regulator of several genes involved in mammalian oxygen homoeostasis. Besides the well described regulation of the HIF-1alpha subunit via hydroxylation-mediated protein stability in hypoxia, there are several indications of an additional translational control of the HIF-1alpha mRNA, especially after growth factor stimulation. We identified an interaction of CPEB (cytoplasmic polyadenylation-element-binding protein) 1 and CPEB2 with the 3'-UTR (untranslated region) of HIF-1alpha mRNA.

View Article and Find Full Text PDF

The mammalian nuclear poly(A)-binding protein, PABPN1, carries 13 asymmetrically dimethylated arginine residues in its C-terminal domain. By fractionation of cell extracts, we found that protein-arginine methyltransferases (PRMTs)-1, -3, and -6 are responsible for the modification of PABPN1. Recombinant PRMT1, -3, and -6 also methylated PABPN1.

View Article and Find Full Text PDF

The analysis of modulation of fibril formation helps to understand the mechanism of fibrillation processes besides opening routes for therapeutic intervention. Fibril formation was investigated with the N-terminal domain of the nuclear poly-A binding protein PABPN1, a protein in which mutation-based alanine extensions lead to the disease oculopharyngeal muscular dystrophy (OPMD). The disease is characterized by fibrillar inclusions consisting mainly of PABPN1.

View Article and Find Full Text PDF

One of the major limitations in advancing the understanding of tropospheric ozone and aerosol generation and developing strategies for their control is the technical ability to accurately measure volatile organic compounds (VOCs). This paper describes the design of a constant flow VOC sampler. The versatile sampler can be used for fully automated concentration and flux measurements of VOCs.

View Article and Find Full Text PDF

Poly (A) tails are found at the 3' ends of almost all eukaryotic mRNAs. They are bound by two different poly (A) binding proteins, PABPC in the cytoplasm and PABPN1 in the nucleus. PABPC functions in the initiation of translation and in the regulation of mRNA decay.

View Article and Find Full Text PDF

During polyadenylation of mRNA precursors in metazoan cells, poly(A) polymerase is stimulated by the nuclear poly(A) binding protein PABPN1. We report that stimulation depends on binding of PABPN1 to the substrate RNA directly adjacent to poly(A) polymerase and results in an approximately 80-fold increase in the apparent affinity of poly(A) polymerase for RNA without significant effect on catalytic efficiency. PABPN1 associates directly with poly(A) polymerase either upon allosteric activation by oligo(A) or, in the absence of RNA, upon deletion of its N-terminal domain.

View Article and Find Full Text PDF

The nuclear poly(A)-binding protein (PABPN1) is involved in the synthesis of the mRNA poly(A) tails in most eukaryotes. We report that the protein contains two RNA binding domains, a ribonucleoprotein-type RNA binding domain (RNP domain) located approximately in the middle of the protein sequence and an arginine-rich C-terminal domain. The C-terminal domain also promotes self-association of PABPN1 and moderately cooperative binding to RNA.

View Article and Find Full Text PDF