A key challenge for the development of active plasmonic nanodevices is the lack of materials with fully controllable plasmonic properties. In this work, we demonstrate that a plasmonic resonance in top-down nanofabricated yttrium antennas can be completely and reversibly turned on and off using hydrogen exposure. We fabricate arrays of yttrium nanorods and optically observe, in extinction spectra, the hydrogen-induced phase transition between the metallic yttrium dihydride and the insulating trihydride.
View Article and Find Full Text PDFWe report on chemically prepared silver nanowires (diameters around 100 nm) sustaining surface plasmon modes with wavelengths shortened to about half the value of the exciting light. As we find by scattered light spectroscopy and near-field optical microscopy, the nonradiating character of these modes together with minimized damping due to the well developed wire crystal structure gives rise to large values of surface plasmon propagation length and nanowire end face reflectivity of about 10 microm and 25%, respectively. We demonstrate that these properties allow us to apply the nanowires as efficient surface plasmon Fabry-Perot resonators.
View Article and Find Full Text PDFOptical extinction spectra for particles of structurally disordered carbonaceous material (carbon black, soot) are discussed in terms of the effects of size and shape and the difference between coagulated and coalesced particles. For this purpose, the orientation-averaged specific extinction for several compact and open aggregates of spherical particles is calculated and compared with the specific extincton by homogeneous particles, i.e.
View Article and Find Full Text PDF