Highly magnified micrographs are part of the majority of publications in materials science and related fields. They are often the basis for discussions and far-reaching conclusions on the nature of the specimen. In many cases, reviewers demand and researchers deliver only the bare minimum of micrographs to substantiate the research hypothesis at hand.
View Article and Find Full Text PDFDnaK3, a highly conserved cyanobacterial chaperone of the Hsp70 family, binds to cyanobacterial thylakoid membranes, and an involvement of DnaK3 in the biogenesis of thylakoid membranes has been suggested. As shown here, light triggers synthesis of DnaK3 in the cyanobacterium sp. PCC 6803, which links DnaK3 to the biogenesis of thylakoid membranes and to photosynthetic processes.
View Article and Find Full Text PDFMicrobiology (Reading)
March 2016
Most cyanobacteria use a single type of cyanophycin synthetase, CphA1, to synthesize the nitrogen-rich polymer cyanophycin. The genomes of many N2-fixing cyanobacteria contain an additional gene that encodes a second type of cyanophycin synthetase, CphA2. The potential function of this enzyme has been debated due to its reduced size and the lack of one of the two ATP-binding sites that are present in CphA1.
View Article and Find Full Text PDFCyanobacteria are photoautotrophic prokaryotes with a plant-like photosynthetic machinery. Because of their short generation times, the ease of their genetic manipulation, and the limited size of their genome and proteome, cyanobacteria are popular model organisms for photosynthetic research. Although the principal mechanisms of photosynthesis are well-known, much less is known about the biogenesis of the thylakoid membrane, hosting the components of the photosynthetic, and respiratory electron transport chain in cyanobacteria.
View Article and Find Full Text PDFThe rimb1 (redox imbalanced 1) mutation was mapped to the RCD1 locus (radical-induced cell death 1; At1g32230) demonstrating that a major factor involved in redox-regulation genes for chloroplast antioxidant enzymes and protection against photooxidative stress, RIMB1, is identical to the regulator of disease response reactions and cell death, RCD1. Discovering this link let to our investigation of its regulatory mechanism. We show in yeast that RCD1 can physically interact with the transcription factor Rap2.
View Article and Find Full Text PDFThylakoid membranes are typical and essential features of both chloroplasts and cyanobacteria. While they are crucial for phototrophic growth of cyanobacterial cells, biogenesis of thylakoid membranes is not well understood yet. Dark-grown Synechocystis sp.
View Article and Find Full Text PDFA chimeric cyanophycin synthetase gene composed of the cphATe coding region from the cyanobacterium Thermosynechococcus elongatus BP-1, the constitutive 35S promoter and the plastid targeting sequence of the integral photosystem II protein PsbY was transferred to the tobacco variety Petit Havanna SRI and the commercial potato starch production variety Albatros. The resulting constitutive expression of cyanophycin synthetase leads to polymer contents in potato leaf chloroplasts of up to 35 mg/g dry weight and in tuber amyloplasts of up to 9 mg/g dry weight. Both transgenic tobacco and potato were used for the development of isolation methods applicable for large-scale extraction of the polymer.
View Article and Find Full Text PDFChloroplasts are equipped with a nuclear-encoded antioxidant defence system the components of which are usually expressed at high transcript and activity levels. To significantly challenge the chloroplast antioxidant system, Arabidopsis thaliana plants, acclimated to extremely low light slightly above the light compensation point or to normal growth chamber light, were moved to high light corresponding to a 100- and 10-fold light jump, for 6 h and 24 h in order to observe the responses of the water-water cycle at the transcript, protein, enzyme activity, and metabolite levels. The plants coped efficiently with the high light regime and the photoinhibition was fully reversible.
View Article and Find Full Text PDFThe gram-negative myxobacterium Sorangium cellulosum So ce56 bears the largest bacterial genome published so far, coding for nearly 10,000 genes. Careful analysis of this genome data revealed that part of the genes coding for the very well conserved biosynthesis of lipopolysaccharides (LPS) are missing in this microbe. Biochemical analysis gave no evidence for the presence of LPS in the membranes of So ce56.
View Article and Find Full Text PDFThe production of biodegradable polymers that can be used to substitute petrochemical compounds in commercial products in transgenic plants is an important challenge for plant biotechnology. Nevertheless, it is often accompanied by reduced plant fitness. To decrease the phenotypic abnormalities of the sprout and to increase polymer production, we restricted cyanophycin accumulation to the potato tubers by using the cyanophycin synthetase gene (cphA(Te)) from Thermosynechococcus elongatus BP-1, which is under the control of the tuber-specific class 1 promoter (B33).
View Article and Find Full Text PDFThe vesicle-inducing protein in plastids 1 (Vipp1) was found to be involved in thylakoid membrane formation in chloroplasts and cyanobacteria. In contrast to chloroplasts, it has been suggested that in cyanobacteria the protein is only tightly associated with the cytoplasmic membrane. In the present study we analyze and describe the subcellular localization and the oligomeric organization of Vipp1 from the cyanobacterium Synechocystis PCC 6803.
View Article and Find Full Text PDFThe protein Slr0782 from Synechocystis sp. PCC 6803, which has similarity to L-amino acid oxidase from Synechococcus elongatus PCC 6301 and PCC 7942, has been characterized in part. Immunoblot blot analysis showed that Slr0782 is mainly thylakoid membrane-associated.
View Article and Find Full Text PDFIn this article, we show that the orf slr1471 from Synechocystis sp. PCC 6803 codes for a functional member of the YidC/Alb3/Oxa1 protein family, and the encoded protein has a transmembrane topology with a common core structure. Using specific antibodies raised against the Synechocystis YidC homologous protein, we further show that the Synechocystis YidC protein appears to be predominantly localized in the cyanobacterial cytoplasmic membrane.
View Article and Find Full Text PDFThe production of biodegradable polymers in transgenic plants is an important challenge in plant biotechnology; nevertheless, it is often accompanied by reduced plant fitness. In order to decrease the phenotypic abnormalities caused by cytosolic production of the biodegradable polymer cyanophycin, and to increase polymer accumulation, four translocation pathway signal sequences for import into chloroplasts were individually fused to the coding region of the cyanophycin synthetase gene (cphA(Te)) of Thermosynechococcus elongatus BP-1, resulting in the constructs pRieske-cphA(Te), pCP24-cphA(Te), pFNR-cphA(Te) and pPsbY-cphA(Te). These constructs were expressed in Nicotiana tabacum var.
View Article and Find Full Text PDFZ Naturforsch C J Biosci
August 2007
A network of enzymatic and nonenzymatic antioxidants protects chloroplasts from photooxidative damage. With all enzymatic components being nuclear encoded, the control of the antioxidant capacity depends on chloroplast-to-nucleus redox signaling. Using an Arabidopsis (Arabidopsis thaliana) reporter gene line expressing luciferase under control of the redox-sensitive 2-cysteine peroxiredoxin A (2CPA) promoter, six mutants with low 2CPA promoter activity were isolated, of which five mutants show limitations in redox-box regulation of the 2CPA promoter.
View Article and Find Full Text PDFA plant lectin was isolated from barley (Hordeum vulgare) coleoptiles using acidic extraction and different chromatographic methods. Sequencing of more than 50% of the protein sequence by Edman degradation confirmed a full-length cDNA clone. The subsequently identified open reading frame encodes for a 15 kDa protein which could be found in the soluble fraction of barley coleoptiles.
View Article and Find Full Text PDFDuring early seedling development of oil seed plants, the transition from lipid based heterotrophic to photoautotrophic carbohydrate metabolism is accompanied with a biphasic control of the chloroplast antioxidant system. In continuous light, organellar peroxiredoxins (Prx) and thylakoid-bound ascorbate peroxidase (tAPx) are activated early in seedling development, while stromal ascorbate peroxidase (sAPx), Cu/Zn-superoxide dismutase-2 (Csd2) and monodehydroascorbate reductase (MDHAR) and the cytosolic peroxiredoxins PrxIIB, PrxIIC and PrxIID are fully activated between 2.5 and 3 days after radicle emergence (DARE).
View Article and Find Full Text PDFPhotosynthetic organisms respond to changes in ambient light by modulating the size and composition of their light-harvesting complexes, which in the case of the green alga Chlamydomonas reinhardtii consists of >15 members of a large extended family of chlorophyll binding subunits. How their expression is coordinated is unclear. Here, we describe the analysis of an insertion mutant, state transitions mutant3 (stm3), which we show has increased levels of LHCBM subunits associated with the light-harvesting antenna of photosystem II.
View Article and Find Full Text PDFSlr1295 (and Slr0513) in the cyanobacterium Synechocystis sp. PCC 6803 has amino acid similarity to the bacterial FbpA protein family and also to IdiA of Synechococcus PCC 6301/PCC 7942. To determine whether Slr1295 is the periplasm-located component of an iron transporter, or has a function in protecting photosystem (PS) II, subcellular localization and Deltaslr1295 mutant characterization studies were performed.
View Article and Find Full Text PDFPyrrolizidine alkaloids (PAs) are constitutive plant defense compounds with a sporadic taxonomic occurrence. The first committed step in PA biosynthesis is catalyzed by homospermidine synthase (HSS). Recent evidence confirmed that HSS evolved by gene duplication from deoxyhypusine synthase (DHS), an enzyme involved in the posttranslational activation of the eukaryotic translation initiation factor 5A.
View Article and Find Full Text PDFThe 2-cysteine peroxiredoxins (2-Cys Prx) constitute an ancient family of peroxide detoxifying enzymes and have acquired a plant-specific function in the oxygenic environment of the chloroplast. Immunocytochemical analysis and work with isolated intact chloroplasts revealed a reversible binding of the oligomeric form of 2-Cys Prx to the thylakoid membrane. The oligomeric form of the enzyme was enhanced under stress.
View Article and Find Full Text PDF