This is the second part of a two-part paper on the application of computer-aided diagnosis to diffuse optical tomography (DOT) for diagnosing rheumatoid arthritis (RA). A comprehensive analysis of techniques for the classification of DOT images of proximal interphalangeal joints of subjects with and without RA is presented. A method for extracting heuristic features from DOT images was presented in Part 1.
View Article and Find Full Text PDFThis is the first part of a two-part paper on the application of computer-aided diagnosis to diffuse optical tomography (DOT). An approach for extracting heuristic features from DOT images and a method for using these features to diagnose rheumatoid arthritis (RA) are presented. Feature extraction is the focus of Part 1, while the utility of five classification algorithms is evaluated in Part 2.
View Article and Find Full Text PDFIEEE Trans Med Imaging
October 2011
We are presenting data from the largest clinical trial on optical tomographic imaging of finger joints to date. Overall we evaluated 99 fingers of patients affected by rheumatoid arthritis (RA) and 120 fingers from healthy volunteers. Using frequency-domain imaging techniques we show that sensitivities and specificities of 0.
View Article and Find Full Text PDFA computer-aided interpretation approach is proposed to detect rheumatic arthritis (RA) in human finger joints using optical tomographic images. The image interpretation method employs a classification algorithm that makes use of a so-called self-organizing mapping scheme to classify fingers as either affected or unaffected by RA. Unlike in previous studies, this allows for combining multiple image features, such as minimum and maximum values of the absorption coefficient for identifying affected and not affected joints.
View Article and Find Full Text PDFIn frequency-domain optical tomography (FDOT) the quality of the reconstruction result is affected by the choice of the source-modulation frequency. In general the accuracy of the reconstructed image should improve as the source-modulation frequency increases. However, this is only true for noise-free data.
View Article and Find Full Text PDFFrequency-domain optical imaging systems have shown great promise for characterizing blood oxygenation, hemodynamics, and other physiological parameters in human and animal tissues. However, most of the frequency domain systems presented so far operate with source modulation frequencies below 150 MHz. At these low frequencies, their ability to provide accurate data for small tissue geometries such as encountered in imaging of finger joints or rodents is limited.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
March 2008
For development and test of new optical imaging devices, phantoms are widely used to emulate the tissue to be imaged. Phantom design gets more difficult the more complex the tissue is structured. We report on developing and testing a solid, stable finger joint phantom to simulate transillumination of finger joints in frequency-domain imaging systems.
View Article and Find Full Text PDF