The effectiveness of the mechanism of precipitation strengthening in metallic alloys depends on the shapes of the precipitates. Two different material systems are considered: tetragonal γ'' precipitates in Ni-based alloys and tetragonal θ' precipitates in Al-Cu-alloys. The shape formation and evolution of the tetragonally misfitting precipitates was investigated by means of experiments and phase-field simulations.
View Article and Find Full Text PDFThe effects of anisotropic interfacial properties and heterogeneous elasticity on the growth and ripening of plate-like θ'-phase (AlCu) in Al-1.69 at.% Cu alloy are studied.
View Article and Find Full Text PDFHigh entropy or compositionally complex alloys provide opportunities for optimization towards new high-temperature materials. Improvements in the equiatomic alloy AlCoCrCuFeNi (at.%) led to the base alloy for this work with the chemical composition AlCoCrFeNiTi (at.
View Article and Find Full Text PDFWe determined the entropy of high entropy alloys by investigating single-crystalline nickel and five high entropy alloys: two fcc-alloys, two bcc-alloys and one hcp-alloy. Since the configurational entropy of these single-phase alloys differs from alloys using a base element, it is important to quantify the entropy. Using differential scanning calorimetry, c-measurements are carried out from -170 °C to the materials' solidus temperatures T.
View Article and Find Full Text PDFCompositionally complex alloys, or high entropy alloys, are good candidates for applications at higher temperatures in gas turbines. After their introduction, the equiatomic AlCoCrCuFeNi (at.%) served as a starting material and a long optimization road finally led to the recently optimized AlCoCrFeNiTi (at.
View Article and Find Full Text PDFLaser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.
View Article and Find Full Text PDFCompositionally complex alloys, also called high entropy alloys, have been investigated for over a decade in view of different applications, but so far only a small number of alloys can be considered as presenting good enough properties for industrial application. The most common family of elements is Al-Co-Cr-Cu-Fe-Ni. The equiatomic alloy having 5 phases and being too brittle, the composition has been modified in order to improve the mechanical properties.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
May 2010
The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process.
View Article and Find Full Text PDFThe classical wear mechanisms abrasion, fatigue, and adhesion are the most frequent causes of surface changes of ultra high molecular weight polyethylene (UHMWPE) in artificial joints. The counterpart material has a strong influence on the wear and friction behavior of artificial joints due to its abrasive properties and adhesive interaction with UHMWPE. The formation of a transfer layer on the counterpart in UHMWPE bearing systems is often described as being a clear indication of strong adhesive forces.
View Article and Find Full Text PDFMost total knee replacement joints consist of a metal femoral component made from a cobalt-chromium- molybdenum (CoCrMo)-alloy and a tibial component with an ultrahigh molecular weight polyethylene (UHMWPE) bearing surface. Wear of the UHMWPE remains the primary disadvantage of these implants. The allergic potential ascribed to CoCrMo-alloys is a further concern.
View Article and Find Full Text PDFThe wear of ultrahigh molecular weight polyethylene (UHMWPE) is considered as one of the major reasons for revision of artificial joints. While in vivo measurements have shown a significant temperature increase in knee implants, the amount of heat dissipated within the UHMWPE tibial component and its influence on the friction behavior when paired with a cobalt-chromium (CoCrMo) femoral component is unknown. Our goal was to address these questions by measuring the temperature rise over a wide range of tribological loading conditions that mimic certain spots on artificial knee joints.
View Article and Find Full Text PDF