Publications by authors named "Uwe Gerlach"

ZED1227 is a small molecule tissue transglutaminase (TG2) inhibitor. The compound selectively binds to the active state of TG2, forming a stable covalent bond with the cysteine in its catalytic center. The molecule was designed for the treatment of celiac disease.

View Article and Find Full Text PDF

Background: Factor XIII (FXIII) is the final enzyme of the coagulation cascade. While the other enzymatic coagulation factors are proteases, FXIII belongs to the transglutaminase family. FXIIIa covalently crosslinks the fibrin clot and represents a promising target for drug development to facilitate fibrinolysis.

View Article and Find Full Text PDF

Mutations in the gene encoding for the K+ channel alpha-subunit KCNQ1 have been associated with long QT syndrome and deafness. Besides heart and inner ear epithelial cells, KCNQ1 is expressed in a variety of epithelial cells including renal proximal tubule and gastrointestinal tract epithelial cells. At these sites, cellular K+ ions exit through KCNQ1 channel complexes, which may serve to recycle K+ or to maintain cell membrane potential and thus the driving force for electrogenic transepithelial transport, e.

View Article and Find Full Text PDF

Potassium channels regulate insulin secretion. The closure of K(ATP) channels leads to membrane depolarisation, which triggers Ca(2+) influx and stimulates insulin secretion. The subsequent activation of K(+) channels terminates secretion.

View Article and Find Full Text PDF

Background: Antiarrhythmic drugs for treatment of atrial fibrillation in patients with heart failure are limited by proarrhythmia and low efficacy. Experimental studies indicate that the pure I(Ks) blocking agents chromanol 293b and HMR 1556 prolong repolarization more markedly at fast than at slow heart rates and during beta-adrenergic stimulation. These properties may overcome some of the above quoted limitations.

View Article and Find Full Text PDF

Recently, we and others have shown that luminal K+ recycling via KCNQ1 K+ channels is required for gastric H+ secretion. Inhibition of KCNQ1 by the chromanol 293B strongly diminished H+ secretion. The present study aims at clarifying KCNQ1 subunit composition, subcellular localization, regulation and pharmacology in parietal cells.

View Article and Find Full Text PDF

The cardiac ATP sensitive potassium channel (K(ATP) channel) SUR2A/Kir6.2 is an emerging target for antiarrhythmic intervention. This channel accounts for known electrophysiological derangements soon after the onset of myocardial ischemia.

View Article and Find Full Text PDF

Objectives: This study evaluated the in vivo electrophysiological effects of a highly selective slow delayed-rectifier K+-current blocker, HMR 1556, to gain insights into the consequences of selectively inhibiting the slow delayed-rectifier current in vivo.

Methods: Atrial and ventricular effective refractory periods, sinus node recovery time, Wenckebach cycle-length, atrial fibrillation duration and electrocardiographic intervals were measured before and after intravenous HMR 1556.

Results: HMR 1556 increased atrial and ventricular refractory periods (e.

View Article and Find Full Text PDF

Background: In large mammals and humans, the contribution of IKs to ventricular repolarization is still incompletely understood.

Methods And Results: In vivo and cellular electrophysiological experiments were conducted to study IKs in canine ventricular repolarization. In conscious dogs, administration of the selective IKs blocker HMR 1556 (3, 10, or 30 mg/kg PO) caused substantial dose-dependent QT prolongations with broad-based T waves.

View Article and Find Full Text PDF

It is unclear whether chromanol 293B, a selective inhibitor of slow component of delayed rectifier K(+) current (I(Ks)), may affect other K(+) currents in human atrium. With whole-cell patch configuration, we evaluated effects of 293B on transient outward K(+) current (I(to1)) and ultra-rapid delayed rectifier K(+) current (I(Kur)) in isolated human atrial myocytes. It was found that 293B inhibited I(to1) and I(Kur) in a concentration-dependent manner.

View Article and Find Full Text PDF

Purpose: The chromanol HMR 1556 is a potent blocker of KvLQT1/minK potassium channels expressed in Xenopus oocytes. The compound is therefore a new class III antiarrhythmic drug with a distinct mechanism of action. However, the effect of HMR 1556 on atrial ion channels and the selectivity of block in the human heart has not been investigated.

View Article and Find Full Text PDF

The slowly activating delayed rectifier potassium current (IKs) contributes prominently to ventricular repolarization of the cardiac action potential. Development of a selective IKs blocker is important for the elucidation of the physiologic and pathophysiologic relevance of IKs and the development of antiarrhythmic strategies. HMR 1556 [(3R,4S)-(+)-N-[3-hydroxy-2,2-dimethyl-6-(4,4,4-trifluorobutoxy) chroman-4-yl]-N-methylmethanesulfonamide] is a new chromanol derivative developed as a selective IKs blocker.

View Article and Find Full Text PDF

The inhibitor of I(Ks)-channels, HMR1556, a potentially antiarrhythmic drug, might possess ototoxic side-effects. The I(Ks)-channels are not only expressed in the heart but also in the stria vascularis of the inner ear and in the dark cells of the vestibular organ. Therefore possible effects of HMR1556 on hearing were studied in cats.

View Article and Find Full Text PDF

The inhibitory effects of the anesthetic barbiturate pentobarbital on the slow ( I(Ks)) and fast component ( I(Kr)) of cardiac delayed rectifier potassium currents ( I(K)) and on the inward rectifier potassium currents ( I(K1)) were examined in Xenopus oocytes expressing the human minK, human ether-á-go-go related gene (HERG) and guinea pig Kir2.2, respectively. Block of native I(K) ( I(Ks) and I(Kr)) and inward rectifier potassium current ( I(K1)) by pentobarbital was examined in guinea pig ventricular myocytes.

View Article and Find Full Text PDF

Recently, the slowly-activating voltage-dependent K+ channel current (IKs) has been reported in the rat pancreatic acinus (RPA). IKs is modulated positively by ACh and secretin, Ca2+ - and cAMP-mediated secretagogues, respectively. In this study, we investigated the effect of somatostatin (SS), a well-known inhibitory hormone of pancreatic fluid secretion, on I(Ks) in RPAs.

View Article and Find Full Text PDF