Publications by authors named "Uwatoko Y"

We have developed a built-in gasket for the Bridgman-type opposed-anvil high-pressure cell, featuring a PTFE (Teflon) capsule of ϕ 2.0 (1.5) × 2.

View Article and Find Full Text PDF
Article Synopsis
  • The Ruddlesden-Popper bilayer nickelate LaNiO has been linked to high-temperature superconductivity (HTSC) under high pressure (over 14 GPa), but lacks clear diamagnetic signals due to low superconducting volume fractions.
  • Research on Pr-doped LaPrNiO polycrystalline samples shows that Pr substitutions help create a nearly pure bilayer structure, mitigating the intergrowth of competing phases.
  • At pressures above 11 GPa, a transition occurs, with HTSC developing further, achieving notable superconducting transition temperatures and confirming bulk HTSC through significant diamagnetic signals below 75 K at over 15 GPa.
View Article and Find Full Text PDF

We report the pressure () effect on the superconducting transition temperatureand the upper critical fieldof infinite-layer NdSrNiOthin films by measuring the electrical transport properties under various hydrostatic pressures to 4.6 GPa. At ambient pressure, it shows the clear superconducting transition with∼ 10 K.

View Article and Find Full Text PDF

We developed a metallic pressure cell made of 56Ni-40Cr-4Al (Ni-Cr-Al) alloy for use with a non-destructive pulse magnet and a magnetic susceptibility measurement apparatus with a proximity detector oscillator (PDO) in pulsed magnetic fields of up to 51 T under pressures of up to 2.1 GPa. Both the sample and sensor coil of the PDO were placed in the cell so that the magnetic signal from Ni-Cr-Al would not overlay the intrinsic magnetic susceptibility of the sample.

View Article and Find Full Text PDF

The recently discovered kagome superconductors AVSb (A = K, Rb, Cs) exhibit unusual charge-density-wave (CDW) orders with time-reversal and rotational symmetry breaking. One of the most crucial unresolved issues is identifying the symmetry of the superconductivity that develops inside the CDW phase. Theory predicts a variety of unconventional superconducting symmetries with sign-changing and chiral order parameters.

View Article and Find Full Text PDF

VSn ( = Sc, Y, or rare earth) is a new family of kagome metals that have a similar vanadium structural motif as VSb ( = K, Rb, Cs) compounds. Unlike VSb, ScVSn is the only compound among the series of VSn that displays a charge density wave (CDW) order at ambient pressure, yet it shows no superconductivity (SC) at low temperatures. Here, we perform a high-pressure transport study on the ScVSn single crystal to track the evolutions of the CDW transition and to explore possible SC.

View Article and Find Full Text PDF

The successful synthesis of superconducting infinite-layer nickelate thin films with the highest T ≈ 15 K has ignited great enthusiasm for this material class as potential analogs of the high-T cuprates. Pursuing a higher T is always an imperative task in studying a new superconducting material system. Here we report high-quality PrSrNiO thin films with T ≈ 17 K synthesized by carefully tuning the amount of CaH in the topotactic chemical reduction and the effect of pressure on its superconducting properties by measuring electrical resistivity under various pressures in a cubic anvil cell apparatus.

View Article and Find Full Text PDF

In this report, we have introduced magnetic ordering into the nontrivial system of conventional topological insulators (TIs) by creating magnetic interfaces. In this context, antimony di-chalcogenide SbTe sandwiched between two thin layers of FeSe was prepared using the pulsed laser deposition (PLD) technique. The prepared heterostructure demonstrated good crystallinity along with homogeneous morphology displaying pyramid-shaped characteristic triangular islands.

View Article and Find Full Text PDF

We investigated the superconductivity of (TMTTF)TaF (TMTTF: tetramethyl-tetrathiafulvalene) by conducting resistivity measurements under high pressure up to 8 GPa. A cubic anvil cell (CAC) pressure generator, which can produce hydrostatic high-pressure, was used for this study. Since the generalized temperature-pressure (-) diagram of (TMTF) ( = Se, S, : monovalent anion) based on (TMTTF)PF ( = 70 K and spin-Peierls: SP, = 15 K) was proposed by Jérome, exploring superconductivity states using high-pressure measurement beyond 4 GPa has been required to confirm the universality of the electron-correlation variation under pressure in (TMTTF) (TMTTF)TaF, which has the largest octahedral-symmetry counter anion TaF in the (TMTTF) series, possesses the highest charge-ordering (CO) transition temperature ( = 175 K) in (TMTTF) and demonstrates an anti-ferromagnetic transition ( = 9 K) at ambient pressure.

View Article and Find Full Text PDF

Quantum phase transitions in quantum matter occur at zero temperature between distinct ground states by tuning a nonthermal control parameter. Often, they can be accurately described within the Landau theory of phase transitions, similarly to conventional thermal phase transitions. However, this picture can break down under certain circumstances.

View Article and Find Full Text PDF

We report an unusual pressure-induced superconducting state that coexists with an antiferromagnetic ordering of Eu moments and shows a large upper critical field comparable to the Pauli paramagnetic limit in EuTe. In concomitant with the emergence of superconductivity with T ≈ 3-5 K above P ≈ 6 GPa, the antiferromagnetic transition temperature T(P) experiences a quicker rise with the slope increased dramatically from dT/dP = 0.85(14) K/GPa for P ≤ P to 3.

View Article and Find Full Text PDF

The Mn-based superconductor is rare owing to the strong magnetic pair-breaking effect. Here we report on the discovery of pressure-induced superconductivity in KMn_{6}Bi_{5}, which becomes the first ternary Mn-based superconductor. At ambient pressure, the quasi-one-dimensional KMn_{6}Bi_{5} is an antiferromagnetic metal with T_{N}≈75  K.

View Article and Find Full Text PDF

A complex interplay of different energy scales involving Coulomb repulsion, spin-orbit coupling, and Hund's coupling energy in 2D van der Waals (vdW) material produces a novel emerging physical state. For instance, ferromagnetism in vdW charge transfer insulator CrGeTe_{3} provides a promising platform to simultaneously manipulate the magnetic and electrical properties for potential device implementation using few nanometers thick materials. Here, we show a continuous tuning of magnetic and electrical properties of a CrGeTe_{3} single crystal using pressure.

View Article and Find Full Text PDF

We have investigated the pressure () effect on structural (up to 10 GPa), transport [(): up to 10 GPa], and magnetic [((): up to 1 GPa)] properties and analyzed the flux pinning mechanism of the FeMnSeTe superconductor. The maximum superconducting transition temperature ( ) of 22 K with the coefficient of d /d = +2.6 K/GPa up to 3 GPa (d /d = -3.

View Article and Find Full Text PDF

FeSe is a unique high-[Formula: see text] iron-based superconductor in which nematicity, superconductivity, and magnetism are entangled with each other in the P-T phase diagram. We performed [Formula: see text]Se-nuclear magnetic resonance measurements under pressures of up to 3.9 GPa on 12% S-substituted FeSe, in which the complex overlap between the nematicity and magnetism are resolved.

View Article and Find Full Text PDF

In solid materials, the parameters relevant to quantum effects, such as the spin quantum number, are basically determined and fixed at the chemical synthesis, which makes it challenging to control the amount of quantum correlations. We propose and demonstrate a method for active control of the classical-quantum crossover in magnetic insulators by applying external pressure. As a concrete example, we perform high-field, high-pressure measurements on CsCuCl, which has the structure of weakly-coupled spin chains.

View Article and Find Full Text PDF

CsV_{3}Sb_{5} is a newly discovered Z_{2} topological kagome metal showing the coexistence of a charge-density-wave (CDW)-like order at T^{*}=94  K and superconductivity (SC) at T_{c}=2.5  K at ambient pressure. Here, we study the interplay between CDW and SC in CsV_{3}Sb_{5} via measurements of resistivity, dc and ac magnetic susceptibility under various pressures up to 6.

View Article and Find Full Text PDF

The magneto-transport, magnetization and theoretical electronic-structure have been investigated on type-II Weyl semimetallic MoTeP. The ferromagnetic ordering is observed in the studied sample and it has been shown that the observed magnetic ordering is due to the defect states. It has also been demonstrated that the presence of ferromagnetic ordering in effect suppresses the magnetoresistance (MR) significantly.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs), which are self-assemblies of metal ions and organic ligands, provide a tunable platform to search a new state of matter. A two-dimensional (2D) perfect kagome lattice, whose geometrical frustration is a key to realizing quantum spin liquids, has been formed in the π - conjugated 2D MOF [Cu(CS)] (Cu-BHT). The recent discovery of its superconductivity with a critical temperature of 0.

View Article and Find Full Text PDF

Ice exhibits extraordinary structural variety in its polymorphic structures. The existence of a new form of diversity in ice polymorphism has recently been debated in both experimental and theoretical studies, questioning whether hydrogen-disordered ice can transform into multiple hydrogen-ordered phases, contrary to the known one-to-one correspondence between disordered ice and its ordered phase. Here, we report a high-pressure phase, ice XIX, which is a second hydrogen-partially-ordered phase of ice VI.

View Article and Find Full Text PDF

The interplay among magnetism, electronic nematicity, and superconductivity is the key issue in strongly correlated materials including iron-based, cuprate, and heavy-fermion superconductors. Magnetic fluctuations have been widely discussed as a pairing mechanism of unconventional superconductivity, but recent theory predicts that quantum fluctuations of nematic order may also promote high-temperature superconductivity. This has been studied in FeSeS superconductors exhibiting nonmagnetic nematic and pressure-induced antiferromagnetic orders, but its abrupt suppression of superconductivity at the nematic end point leaves the nematic-fluctuation driven superconductivity unconfirmed.

View Article and Find Full Text PDF

A "palm" cubic-anvil pressure cell (PCAC) having an outer diameter of 60 mm, the smallest cubic-anvil cell to date, was fabricated to insert in a large-bore superconducting magnet. The pressure cell has a sample space of ϕ 2.5 × 1.

View Article and Find Full Text PDF

In this study, we present a photo-luminescence (PL) and persistent luminescence (PersL) investigation of Ca6BaP4O17:Eu2+,Tb3+ (CBPO:Eu,Tb) at high hydrostatic pressure in the range of 0-11.04 GPa. More importantly, there is a significant increase of PL intensity and extension of PersL duration time at a pressure point of ∼0.

View Article and Find Full Text PDF

One of the most significant issues for superconductivity is clarifying the momentum-dependent superconducting gap Δ([Formula: see text]), which is closely related to the pairing mechanism. To elucidate the gap structure, it is essential to investigate Δ([Formula: see text]) in as many different physical quantities as possible and to crosscheck the results obtained in different methods with each other. In this paper, we report a combinatorial investigation of the superfluid density and the flux-flow resistivity of iron-pnictide superconductors; LiFeAs and BaFe(AsP) (x = 0.

View Article and Find Full Text PDF