Publications by authors named "Uusitalo Sanna"

To meet the growing demand for early fatal disease screening among large populations, current fluorescence detection instruments aiming at point-of-care diagnosis have the tendency to be low cost and high sensitivity, with a high potential for the analysis of low-volume, multiplex analytes with easy operation. In this work, we present the development of a miniaturized, high numerical aperture confocal fluorescence scanner for sub-micro-liter fluid diagnosis. It is enhanced with high-rate analyte accumulation using a pyroelectro-hydrodynamic dispensing system for generating tiny, stable sample droplets.

View Article and Find Full Text PDF

The use of plastics is rapidly rising around the world causing a major challenge for recycling. Lately, a lot of emphasis has been put on recycling of packaging plastics, but, in addition, there are high volume domains with low recycling rate such as automotive, building and construction, and electric and electronic equipment. Waste plastics from these domains often contain additives that restrict their recycling due to the hazardousness and challenges they bring to chemical and mechanical recycling.

View Article and Find Full Text PDF

Today, measurement of raw milk quality and composition relies on Fourier transform infrared spectroscopy to monitor and improve dairy production and cow health. However, these laboratory analyzers are bulky, expensive and can only be used by experts. Moreover, the sample logistics and data transfer delay the information on product quality, and the measures taken to optimize the care and feeding of the cattle render them less suitable for real-time monitoring.

View Article and Find Full Text PDF

Recent technological advancements in wearable sensors have made it easier to detect sweat components, but our limited understanding of sweat restricts its application. A critical bottleneck for temporal and regional sweat analysis is achieving uniform, high-throughput fabrication of sweat sensor components, including microfluidic chip and sensing electrodes. To overcome this challenge, we introduce microfluidic sensing patches mass fabricated via roll-to-roll (R2R) processes.

View Article and Find Full Text PDF

Background: Aggressive familial giant-cell granulomas of the jaws can be severely deforming. Surgical and nonsurgical treatments may be associated with multiple recurrences. Denosumab, a new generation antiresorptive drug, is an osteoclast inhibitor, which may be particularly useful to manage such potentially disfiguring lesions.

View Article and Find Full Text PDF

The ability of noble metal-based nanoparticles (NPs) (Au, Ag) to drastically enhance Raman scattering from molecules placed near metal surface, termed as surface-enhanced Raman scattering (SERS), is widely used for identification of trace amounts of biological materials in biomedical, food safety and security applications. However, conventional NPs synthesized by colloidal chemistry are typically contaminated by nonbiocompatible by-products (surfactants, anions), which can have negative impacts on many live objects under examination (cells, bacteria) and thus decrease the precision of bioidentification. In this article, we explore novel ultrapure laser-synthesized Au-based nanomaterials, including Au NPs and AuSi hybrid nanostructures, as mobile SERS probes in tasks of bacteria detection.

View Article and Find Full Text PDF

A polymer based dual-slab waveguide Young's interferometer was demonstrated for biochemical sensing. Evanescent field is utilized for probing the binding events of biomolecules on the waveguide surface. Refractive index sensing in analyte and protein adsorption on the sensing surface were investigated with glucose de-ionized water solution and bovine serum albumin, immunoglobulin G solutions in phosphate buffered saline buffer.

View Article and Find Full Text PDF

We present a high-throughput roll-to-roll (R2R) manufacturing process for foil-based polymethyl methacrylate (PMMA) chips of excellent optical quality. These disposable, R2R hot embossed microfluidic chips are used for the identification of the antibiotic resistance gene mecA in Staphylococcus epidermidis. R2R hot embossing is an emerging manufacturing technology for polymer microfluidic devices.

View Article and Find Full Text PDF