Publications by authors named "Utz-Uwe Haus"

Identifying the boundary beyond which quantum machines provide a computational advantage over their classical counterparts is a crucial step in charting their usefulness. Gaussian boson sampling (GBS), in which photons are measured from a highly entangled Gaussian state, is a leading approach in pursuing quantum advantage. State-of-the-art GBS experiments that run in minutes would require 600 million years to simulate using the best preexisting classical algorithms.

View Article and Find Full Text PDF

Logical models for cellular signaling networks are recently attracting wide interest: Their ability to integrate qualitative information at different biological levels, from receptor-ligand interactions to gene-regulatory networks, is becoming essential for understanding complex signaling behavior. We present an overview of Boolean modeling paradigms and discuss in detail an approach based on causal logical interactions that yields descriptive and predictive signaling network models. Our approach offers a mathematically well-defined concept, improving the efficiency of analytical tools to meet the demand of large-scale data sets, and can be extended into various directions to include timing information as well as multiple discrete values for components.

View Article and Find Full Text PDF

Chemical synapses are highly specialized cell-cell contacts for communication between neurons in the CNS characterized by complex and dynamic protein networks at both synaptic membranes. The cytomatrix at the active zone (CAZ) organizes the apparatus for the regulated release of transmitters from the presynapse. At the postsynaptic side, the postsynaptic density constitutes the machinery for detection, integration, and transduction of the transmitter signal.

View Article and Find Full Text PDF

Changes in synaptic efficacy underlying learning and memory processes are assumed to be associated with alterations of the protein composition of synapses. Here, we performed a quantitative proteomic screen to monitor changes in the synaptic proteome of four brain areas (auditory cortex, frontal cortex, hippocampus striatum) during auditory learning. Mice were trained in a shuttle box GO/NO-GO paradigm to discriminate between rising and falling frequency modulated tones to avoid mild electric foot shock.

View Article and Find Full Text PDF

Motivation: Elementary modes (EMs) and minimal cut sets (MCSs) provide important techniques for metabolic network modeling. Whereas EMs describe minimal subnetworks that can function in steady state, MCSs are sets of reactions whose removal will disable certain network functions. Effective algorithms were developed for EM computation while calculation of MCSs is typically addressed by indirect methods requiring the computation of EMs as initial step.

View Article and Find Full Text PDF

T cells orchestrate the adaptive immune response, making them targets for immunotherapy. Although immunosuppressive therapies prevent disease progression, they also leave patients susceptible to opportunistic infections. To identify novel drug targets, we established a logical model describing T-cell receptor (TCR) signaling.

View Article and Find Full Text PDF

We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models.

View Article and Find Full Text PDF

Given a metabolic network in terms of its metabolites and reactions, our goal is to efficiently compute the minimal knock-out sets of reactions required to block a given behavior. We describe an algorithm that improves the computation of these knock-out sets when the elementary modes (minimal functional subsystems) of the network are given. We also describe an algorithm that computes both the knock-out sets and the elementary modes containing the blocked reactions directly from the description of the network and whose worst-case computational complexity is better than the algorithms currently in use for these problems.

View Article and Find Full Text PDF

Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest.

View Article and Find Full Text PDF