Hydrogels are three-dimensional network structures of hydrophilic polymers, which have the capacity to take up an enormous amount of fluid/water. Carboxymethyl cellulose (CMC) is a commercially available cellulose derivative that can be used for biomedical applications due to its biocompatibility. It has been used as a major component to fabricate hydrogels because of its superabsorbent nature.
View Article and Find Full Text PDFInjectable calcium phosphate cement is a promising biomaterial for hard tissue repair due to its osteoinductivity, biocompatibility properties, and its use to correct defect areas involving narrow cavities with limited accessibility by the minimally invasive technique. Microwave-synthesized hydroxyapatite (HA) was used for the preparation of cement. In recent years, both magnesium and strontium calcium phosphate cements have exhibited rapid setting, improved mechanical strength, and a good resorption rate.
View Article and Find Full Text PDFThe present study involves the development of citric acid-cross-linked carboxymethyl cellulose (C3CA) scaffolds by a freeze-drying process. Scaffolds were fabricated at different freezing temperatures of -20, -40, or -80 °C to investigate the influence of scaffold pore size on bone regeneration. All three scaffolds were porous in structure, and the pore size was measured to be 74 ± 4, 55 ± 6, and 46 ± 5 μm for -20, -40, and -80 °C scaffolds.
View Article and Find Full Text PDFThis study tests the use of a constrained nonnegative matrix factorization (NMF) algorithm to explore the comparatively new field of chemometric microscopy to support tissue diagnosis. The algorithm can extract the spectral signature and the absolute concentration map of endogenous fluorophores from wide-field microscopic images. The resultant data distinguished normal and fibrous calvarial tissues, based on the changes in their spectral signatures.
View Article and Find Full Text PDFArtificial skin substitute made of polymeric films are of great demand in the field of skin tissue engineering. We report here the fabrication of carboxymethyl cellulose (CMC) and poly(ethylene glycol) (PEG) blend films by solution casting method for wound healing applications. The physicochemical characteristics and the thermal stability of the films were analyzed.
View Article and Find Full Text PDF